
MCM6830L7
MIKBUG/
MINIBUG
ROM
Prepared by
Mike Wiles
Computer Systems

Andre Felix
Support Products Group

The MIKBUG/MINIBUG ROM is an MCM6830 ROM of the M8800 Family of parts. This
ROM provides an asynchronous communications program, a loader prom, and a diagnostic
program for use with the ME8800 Microprocessing Unit.

This document was scanned and edited by Michael Holley, Oct 21 2000.

2

MCM6830L7 MIKBUG /
MINIBUG ROM

1.0 SYSTEMS OVERVIEW
The MIKBUG/MINIBUG ROM provides the user with

three separate firmware programs to interface with a serial
asynchronous (start-stop) data communications device. They
are:

1) MIKBUG Rev. 9
2) MINIBUG Rev. 4
3) Test Pattern

The map of the programs is shown in Figure 1-1.

NOTE

All enables for the ROM are active high.

2.0 FEATURES
The more important features of these programs are:

MIKBUG Rev. 9
A. Memory Loader
B. Print Registers of Target Program
C. Print/Punch Dump
D. Memory Change
E. Go to Target Program
F. Operates with PIA for the Parallel-to-Serial Interface
G. Restart/NMI/SWI Interrupt Vectors

MINIBUG Rev. 4
A. Memory Loader
B. Memory Change
C. Print Registers of Target Program
D. Go to Target Program
E. Assumes a UART for the Parallel-to-Serial Interface

3.0 HARDWARE CONFIGURATION

3.1 MIKBUG Hardware
The MIKBUG/MINIBUG ROM is intended for use with the

MC6800 Microprocessing Unit in an M6800 Microcomputer
system. This ROM, using the MIKBUG Firmware, should be
connected into the system as illustrated in Figure 3-1. As shown,
all of the enable inputs are high levels and the address line A9
on pin 15 is grounded. The MIKBUG Firmware in this ROM
uses addresses E000 through EIFF. The ROM should be
connected into a system so that its two top MIKBUG Firmware
addresses also will respond to addresses FFFEand FFFF. This is
required for the system to restart properly. There should not be
any devices in the system at a higher address Man this ROM's
addresses. Figure 3-2 depicts a memory map for a system using
the MIKBUG Firmware and Figure 3-3 depicts this system's
block diagram.

The MIKBUG Firmware operates with an MC6820
Peripheral Interface Adapter (PIA) as shown in Figure 3-4. The
MC 14536 device is used as the interface timer. This timer's
interval is set by adjusting the 5 0 k ohm resistor and monitoring
the output signal on pin 13 of the MC14536 device. The zero
level of the timing pulse should be 9.1 ms for 10 characters

The information in this Engineering Note has been carefully reviewed and is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any
license under the patent rights of Motorola Inc. or others.
The material in this note is subject to change, and Motorola In, reserves the right to change specifications without notice.
MIKBUG and MINIBUG are trademarks of Motorola Inc.

3

 per second (CPS) operation and 3.3 ms for 30 CPS operation.
Also, pin 16 (PB6) of the MC6820 PIA should be connected to
+5 volts for 10 CPS operation and ground for 30 CPS operation.

The MC 1488 and MC 1489A devices provide the system
with RS-232C interface capability. If the system is to interface
only with an RS-232C terminal, no other interface circuitry is
required; however, a jumper should be strapped between E3 and
E4. The 4N33 optical isolators and associated circuitry are
required to interface with a 20 mA current loop TTY. A jumper
should be connected between E1 and E2 for TTY operation.

The MIKBUG Firmware also requires random access
memory for a stack and temporary memory storage. The
MCM6810 RAM used for this memory should be configured for
the base memory address at A000 hexadecimal.

A reset switch is required in the system to provide for
restarting the MC6800 MPU and for resetting the MC6820 PIA.
The function may be provided by a pushbutton switch and a
cross-coupled latch flip-flop.

3.2 MINIBUG Hardware, Rev. 4
The MIKBUG/MINIBUG ROM is intended for use with the

MC6800 Microprocessing Unit in an M6800 Microcomputer
system. This system, using MINIBUG Firmware Rev. 4, should
be set up with the starting ROM address at FE00 hexadecimal.
The restart address generator (Figure 3-5)

4

must be configured to respond with address FED6 each time the
MPU requests the restart address. As shown, the system also requires
an MCM68 10 RAM for temporary storage. This RAM shall be
configured for a FF00 base memory address. Figure 3-6 depicts a
memory map for a system using the MINIBUG Rev. 4 Firmware.

The MINIBUG ROM Rev. 4 also uses a parallel-to-serial data
converter to interface with an external terminal. The converter's status
register must be located at address FCF4 and the data register at
address FCF5. The least significant bit of the status register is used to
indicate that the converter has received a character and the second bit
indicates that the converter is ready for the next character to be
transmitted.

5

4.0 SOFTWARE OPERATION

4.1 MIKBUG Operation
The MIKBUG Firmware may be used to debug and evaluate a

user's program. The MIKBUG Firmware enables the user to perform
the following functions:

Memory Loader Function
Memory Examine and Change Function
Print/Punch Memory Function
Display Contents of MPU Registers Function
Go to User's Program Function
Interrupt Request Function
Non Maskable Interrupt Function

The operating procedures for each of these routines as well as the
Reset Function are discussed in the following paragraphs. The
MIKBUG Firmware is inhibited from performing the user's program
except in the Go to User's Program Function and the interrupt
functions.

4.1.1 RESET Function
Perform the RESET Function when power is first applied and

any time the MIKBUG Firmware loses program control.

6

Press the RESET pushbutton switch. The MIKBUG Firmware
should gain program control and the terminal should respond with a
carriage return, a line feed and an asterisk. The MIKBUG control
program is ready for an input.

4.1.2 Memory Leader Function

The Memory Loader Function of MIKBUG loads formatted
binary object tapes or MIKBUG punched memory dump tapes into
memory and if used, external memory modules. Figure 4-1 depicts
the paper tape format. It is assumed at the start of this function that
the MC6800 MPU is performing its MIKBUG control program and
the last data printed by the terminal is an asterisk. Figure 4-2
illustrates a typical Memory Loader Function.

7

a. Load the tape into the terminal tape reader.
b. Set the tape reader switch to AUTO.
c. Enter the character L after the asterisk. This initiates the

MIKBUG loading procedure. The MIKBUG Firmware ignores
all characters prior to the start-of-record on the tape.

NOTE

Tapes punched by MIKBUG do not have an end-of-file character
at the end of the record; therefore, you must type in the characters S9
to exit from the memory loader function, or push the RESET
pushbutton switch.

Checksum Error Detection

If, during the loading function, the MIKBUG Firmware detects a
checksum error, it instructs the terminal to print a question mark and
then stops the tape reader.

NOTE

Underlined characters indicate user input.

d. If a checksum error is present, perform one of the following
substeps:

1) Press the RESET pushbutton switch and abort from the
Memory Loader Function. The MPU will return to the
MIKBUG control program and the terminal will print a
carriage return, a line feed, and an asterisk.

2) Reposition the tape and enter the character L. The record
causing the checksum error is reread.

3) Ignore the checksum error and enter the character L. The
MIKBUG Firmware ignores the checksum error and
continues the Memory Loader Function.

CAUTION

If a checksum error is in an address and the continue option in
substep 3 is selected, there is no certain way of determining where
the data will be loaded into the memory.

4.1.3 Memory Examine and Change Function
The MIKBUG Firmware performs this function in three steps: 1)

examining the contents of the selected memory location (opening the
memory location); 2) changing the contents of this location, if
required; and 3) returning the contents to memory (closing the
memory location). The MIKBUG Firmware, in examining a memory
location, instructs the terminal to print the contents of this memory
location. The MIKBUG Firmware in this function displays each of
the program instructions in machine language.

It is assumed at the start of this function that the MPU is
performing its MIKBUG control program and the last data printed by
the terminal is an asterisk. Figure 4-3 depicts a typical Memory
Examine and Change Function.

NOTE

If the memory address selected is in ROM, PROM, or protected
RAM, the contents of this memory location cannot be changed and
the terminal will print a question mark.

a. Enter the character M after the asterisk to open a memory
location. The terminal will insert a space after the M.

b. Enter in 4-character hexadecimal format the memory
address to be opened. The terminal will print on the next
line the memory address being opened and the contents of
this memory location. The contents are in hexadecimal.

c. The operator must now decide whether to change the data
at this memory location. If the data is to be changed,
change the data in accordance with step d. If the data is not
to be changed, the operator must decide whether to close
this location and open the following memory location (step
e) or to close this memory location and return to the
MIKBUG control program (step f).

d. If the contents of this memory location are to be changed,
enter a space code and then the new data (in hexadecimal
format) to be stored at this location. The new contents are
stored in memory and the terminal prints the following
memory address and its contents. Return to step c.

e. To close the present memory and open the following
memory location, enter any character except a space
character after the displayed memory address contents. The
contents are returned to memory and the terminal prints the
following memory address and its contents. Return to step
c.

f. To close the present memory location and return to the
MIKBUG control program, enter a space code followed by
a carriage return control character. The contents are
returned to memory and the terminal prints an asterisk on
the next line.

*M 0000
*0000 20 FF
*0001 FE AA
*0002 02 .
*0003 02 ._
*

FIGURE 4-3 Typical Memory Examine and Change Function

*L
S113000020FE02020202020202020202020202020B2
S9
*

FIGURE 4-2. Typical Memory Loader Function

8

4.1.4 Print/Punch Memory Function
The Print/Punch Memory Function instructs the MIKBUG

Firmware to punch an absolute formatted binary tape and to print the
selected memory contents. The tape is formatted as shown in Figure
4-1 except that this tape does not contain an end-of-file control
character.

The beginning address and the ending address must be entered
into the memory. Memory addresses A002 and A003 are used to
store the beginning address and addresses A004 and A005 are used to
store the ending address.

It is assumed that the MPU is performing its MIKBUG control
program and the last data printed by the terminal is an asterisk.
Figure 4-4 illustrates a typical Print/Punch Memory Function.

NOTE

If you do not wish to punch a tape, turn off the terminal's tape
reader.

a. Enter the character M after the asterisk to open a memory
location. The terminal will insert a space code after the M.

b. Enter the address A002 after the space code. The terminal
will print on the next line the memory address A002 and
the contents of the address.

c. Enter a space code and the two most significant
hexadecimal bytes of the beginning address after the
contents of address A002. These two bytes are stored in
memory and the terminal prints address A003 and its
contents on the next line.

d. Enter a space code and the two least significant
hexadecimal bytes of the beginning address after the
contents of address A003. These two bytes are stored in
memory and the terminal prints address A004 and its
contents on the next line.

e. Enter a space code and the two most significant
hexadecimal bytes of the ending address after the contents
of address A004. These two bytes are stored in memory and
the terminal prints address A005 and its contents on the
next line.

f. Enter a space code and the two least significant
hexadecimal bytes of the ending address after the contents
of address A005. These two bytes are stored in memory and
the terminal prints address A006 and its contents on the
next line.

g. Enter a space code and carriage return character after the
contents of address A006. The control returns to MIKBUG
control program and the terminal prints an asterisk.

h. Enter the character P after the asterisk. The MIKBUG
Firmware initiates the print/punch operation. At the
conclusion of the print/punch operation the terminal prints
an asterisk, and returns to the MIKBUG control program.

4.1.5 Delay Contents of MPU Registers Function
The Display Contents of MPU Registers Function enables the

MIKBUG Firmware to display the contents of the MC6800
Microprocessing Unit registers for examination and change. It is
assumed at the start of this function that

the MPU is performing its MIKBUG control program and the last
data printed by the terminal is an asterisk. Figure 4-5 illustrates a
typical Display Contents of MPU Registers Function.

*M A002
*A002 F7 00
*A003 6E _01
*A004 99 00
*A005 EE 10
*A006 A0 __
*P
S1130001AA0202020202020202020202020202AC79
*

FIGURE 4-4 Typical Print/Punch Memory Function

*R 8A D6 CE 87AE CF4B A042
*M A043
*A043 8A .
*A044 D6 .
*A045 CE .
*A046 87 .
*A047 AE .
*A048 CF .
*A049 4B 00
*A04A 9E 00
*R 8A D6 CE 87AE 0000 A042
*

FIGURE 4-5 Typical Display Contents of MPU Register Function

9

a. Enter the character R after the asterisk. The terminal will
print the contents of the MPU registers in the following
sequence: condition code register, B accumulator, A
accumulator, index register, program counter, and stack
pointer. On the following line the terminal prints an
asterisk.

b. If the contents of any of the registers are to be changed,
change the data in accordance with Paragraph 4.1 .3. It
should be noted that the address of the stack pointer is
stored last, and it takes eight memory locations to store the
contents of the MPU registers on the stack. Figure 4-5
illustrates changing the contents of the MPU registers and
identifies the location of each register's data.

4.1.6 Go to User's Program Function
This function enables the MPU to perform the user's program. It

is assumed at the start of this function that the MPU is performing its
MIKBUG control program and the data printed by the terminal is an
asterisk.

Enter the character G after the asterisk. The MC6800 MPU
System will perform the user's program until one of the following
conditions occurs:

1) The MPU encounters a WAI (WAIt) instruction. The MPU
now waits for a non-maskable interrupt or an interrupt
request.

2) The MPU encounters a SWI (Software Interrupt)
instruction. The MPU stores the data in the MPU registers o
n the stack and jumps to the MIKBUG control program. The
terminal prints the contents of the MPU registers from the
stack.

3) The RESET pushbutton switch is actuated. This switch is to
be actuated when the user's program blows and places the
MPU under the MIKBUG control program.

4.1.7 Interrupt Request Function
This function enables the user to evaluate a maskable interrupt

routine. Steps a through e prepare the firmware to process an
interrupt request and step f discusses performing the interrupt
routine. It should be noted that this interrupt may be initiated at any
time. It is assumed in preparing the MPU to process the interrupt
request that the MPU is processing its MIKBUG control program and
the last data printed by the terminal is an asterisk.

a. Enter the character M after the asterisk. The terminal will
insert a space code after the M.

b. Enter the address A000. The terminal will print on the next
line the memory address A000 and the contents of this
memory location.

c. Enter a space code and the two most significant
hexadecimal bytes of the first interrupt routine's address
after the contents of address A000. These two bytes are
stored in memory and the terminal prints address A001 and
its contents on the next line.

d. Enter a space code and the two least significant
hexadecimal bytes of the first interrupt routine's address
after the contents of address A001. These two bytes are
stored in memory and the terminal prints address A002 and
its contents on the next line.

e. Enter a space code and a carriage return character after
address A002. The MPU jumps to its MIKBUG control
program and the terminal prints an asterisk.

The MPU now is enabled and ready to perform a maskable
interrupt routine when the interrupt mask is cleared. This interrupt
routine may be initiated at any time either through the PIA (if
enabled) or the IRQ input to the MPU. Initiating an interrupt through
the PIA is discussed in the MC6820 Peripheral Interface Adapter
data sheet while initiating an interrupt through the IRQ input is
discussed below.

f. Ground IRQ input. If the interrupt mask is not set, the
MPU will jump to the interrupt service routine indirectly
through addresses A000 and A001. This is accomplished in
MIKBUG by loading the index register with the contents of
addresses A000 and A001 and then jumping to the address
stored in the index register.

g. Remove the ground from the IRQ input:

4.1.8 Non-Maskable Interrupt Function
This function enables the user to evaluate a non-maskable

interrupt routine. Steps a through e prepare the MC6800 MPU
System to process a NMI (Non-Maskable Interrupt) input and step f
discusses performing the interrupt routine. It is assumed in preparing
the MC6800 MPU System to process a non-maskable interrupt that
the MC6800 MPU System is processing its MIKBUG control
program and the last data printed by the data terminal is an asterisk.

a. Enter the character M after the asterisk. The terminal will
insert a space code after the M.

b. Enter the address A006. The terminal will print on the next
line the memory address A006 and the contents of this
memory location.

c. Enter a space code and the two most significant
hexadecimal digits of the first interrupt routine's address
after the contents of address A006. These two digits are
stored in memory and the terminal prints address A007 and
its contents on the next line.

d. Enter a space code and the two least significant
hexadecimal digits of the first interrupt routine's address
after the contents of address A007. These two digits are
stored in memory and the terminal prints address A008 and
its contents on the next line.

e. Enter a space code and a carriage return character after
address A008. The MC6800 MPU System jumps to its
MIKBUG control program and the terminal prints an
asterisk.

10

The MC6800 MPU System now is enabled to perform a
non-maskable interrupt routine. This non-maskable interrupt routine
may be initiated at any time through the MC6800 MPU System NMI
input.

f. Ground the NMI input P1-E. If the non-maskable interrupt
is not disabled (E3 to E4), the MPU will jump to the
interrupt service routine indirectly through addresses A006
and A007. This is accomplished in MIKBUG by loading
the index register with the contents of addresses A006 and
A007 and then jumping to the address stored in the index
register.

g. Remove the ground from the NMI input P1-E.

4.2 MINIBUG Rev. 4 Operation
The MINIBUG Firmware enables the user's system using the

MIKBUG/MINIBUG ROM to perform the following functions:

Memory Loader Function
Memory Examine and Change Function
Display Contents of MPU Registers Function
Go to User's Program Function

The operating procedures for each of these routines as well as the
RESET Function are discussed in the following paragraphs.

4.2.1 RESET Function
Perform the RESET Function when power is first applied and

any time the MINIBUG Firmware loses program control.

Press the RESET switch (or equivalent). The MINIBUG
Firmware should respond with a carriage return and a line feed
character. The MINIBUG program control now is ready for an input.

4.2.2 Memory Loader Function
The memory loader function of MINIBUG loads formatted

binary object tapes into memory. Figure 4-1 depicts the paper tape
format. It is assumed at the start of this function that the MC6800
MPU is performing its MINIBUG control program. Figure 4-6
illustrates a typical memory loader function.

a. Load the tape into the tape reader.
b. Set the tape reader switch to AUTO.
c. Enter the character L. This initiates the MINIBUG loading

procedure. The MINIBUG program ignores all characters
prior to the start-of-record on the tape.

Checksum Error Detection
If during the loading function, the MINIBUG Firmware detects a

checksum error, it instructs the terminal to print a question mark and
stops while the MPU performs the MINIBUG control program. To
load the tape, the user will have to repeat the memory loader
function.

4.2.3 Memory Examine and Change Function
The MINIBUG Firmware performs this function in three steps: 1)

examining the contents of the selected memory location (opening the
memory location); 2) changing the contents of this location, if
required; and 3) returning the contents to memory (closing the
memory location). The Firmware, in examining a memory location,
instructs the terminal to print the contents of this memory locationin
hexadecimal format. The MINIBUG Firmware in this function
displays each of the program instructions in Machine language.

It is assumed at the start of this function that the MPU is
performing its MINIBUG control program. Figure 4-7 depicts a
typical Memory Examine and Change Function.

NOTE

If no memory, a ROM, or a PROM is located at the selected
address, the contents of this memory address cannot be changed and
the terminal will print a question mark.

M FF2E 00 F0
M FF2F 00 00

FIGURE 4-7 Typical Memory Examine and Change Function

L

S113000020FE02020202020202020202020202020B2

S9

FIGURE 4-6. Typical Memory Loader Function

11

a. Enter the character M. The terminal will insert a space code
after the M.

b. Enter in 4-character hexadecimal the memory address to be
opened. The terminal will print a space code and then the
contents of this memory location. The contents are in
hexadecimal.

c. The operator must now decide whether to change the data at
this memory location. If the data is to be changed, enter the
two new hexadecimal characters to be stored in this
location. The new contents are stored in memory and the
MPU returns to the MINIBUG control program. If the data
is not to be changed, enter a carriage return character; the
previous contents are returned to memory and the MPU
returns to the MINIBUG control program.

4.2.4 Display Contents of MPU Registers Function

The Display Contents of MPU Registers Function enables the
MINIBUG Firmware to display the contents of the MC6800
Microprocessing Unit registers for examination and change. It
is assumed at the start of this function that the MPU is
performing the MINIBUG control program. Figure 4-8
illustrates a typical Display Contents of MPU Registers
Function.

a. Enter the character P. The terminal will print the contents
of the MPU registers in the following sequence:

SP Contents MPU Register

FF29 00 Condition Code Register

FF2A 00 B Accumulator

FF2B 00 A Accumulator

FF2C 00 Index Register High

FF2D 00 Index Register Low

FF2E F0 Program Counter High

FF2F 00 Program Counter Low

b. Use the Memory Examine and Change Function in
paragraph 4.2.3 to change the contents of a register.

4.2.5 Go to User's Program Function
This function enables the MPU to perform the user's program. It

is assumed at the start of this function that the MPU is performing its
MINIBUG control program. Figure 4-9 illustrates a typical Go to
User's Program Function.

Enter the character G. The MPU will load the MPU registers with
the contents identified in Paragraph 4.2.4 and then start running the

user's program at the address in the program counter (locations FF2E
and FF2F). The program counter may be changed using the Memory
Examine and Change Function in Paragraph 4.2.3.

FIGURE 4-9 Typical Go to Use’s Program Function

P 00 00 00 00 00 00 00 FF 29
M 0000 FF 7E
M 0001 00
M 0002
G

 CC B A XH XL PH PL SH SL
P 00 00 00 00 00 F0 00 FF 29

FIGURE 4-8 Typical Contents of MPU Register Function

12

5.0 MIKBUG REV. 9 PROGRAM LISTING

 NAM MIKBUG
 * REV 009

 * COPYRIGHT 1974 BY MOTOROLA INC

* MIKBUG (TM)

 * L LOAD
 * G GO TO TARGET PROGRAM
 * M MEMORY CHANGE
 * F PRINTIPUNCH DUMP
 * R DISPLAY CONTENTS OF TARGET STACK
 * CC B A X P S
 8007 PIASB EQU $8007
 8006 PIADB EQU $8006 B DATA
 8005 PIAS EQU $8005 PIA STATUS
 8004 PIAD EQU $8004 PIA DATA
 * OPT MEMORY
 E000 ORG $E000

 * I/O INTERRUPT SEQUENCE
 E000 FE A0 00 IO LDX IOV
 E003 6E 00 JMP X

 * NMI SEQUENCE
 E005 FE A0 06 POWDWN LDX NIO GET NMI VECTOR
 E008 6E 00 JMP X

 E00A LOAD EQU *
 E00A 86 3C LDA A #$3C
 E00C B7 80 07 STA A PIASB READER RELAY ON
 E00F 86 11 LDA A #@21
 E011 8D 62 BSR OUTCH OUTPUT CHAR

 E013 8D 63 LOAD3 BSR INCH
 E015 81 53 CMP A #'S
 E017 26 FA BNE LOAD3 1ST CHAR NOT (S)
 E019 8D 5D BSR INCH READ CHAR
 E01B 81 39 CMP A #'9
 E01D 27 25 BEQ LOAD21
 E01F 81 31 CMP A #'1
 E021 26 F0 BNE LOAD3 2ND CHAR NOT (1)
 E023 7F A0 0A CLR CKSM ZERO CHECKSUM
 E026 8D 2D BSR BYTE READ BYTE
 E028 80 02 SUB A #2
 E02A B7 A0 0B STA A BYTECT BYTE COUNT
 * BUILD ADDRESS
 E02D 8D 18 BSR BADDR
 * STORE DATA
 E02F 8D 24 LOAD11 BSR BYTE

13

MIKBUG REV. 9 PROGRAM LISTING (continued)

 E031 7A A0 0B DEC BYTECT
 E034 27 05 BEQ LOAD15 ZERO BYTE COUNT
 E036 A7 00 STA A X STORE DATA
 E038 08 INX
 E039 20 F4 BRA LOAD11

 E03B 7C A0 0A LOAD15 INC CKSM
 E03E 27 D3 BEQ LOAD3
 E040 86 3F LOAD19 LDA A #'? PRINT QUESTION MARK
 E042 8D 31 BSR OUTCH
 E044 LOAD21 EQU *
 E044 7E E0 E3 C1 JMP CONTRL

 * BUILD ADDRESS
 E047 8D 0C BADDR BSR BYTE READ 2 FRAMES
 E049 B7 A0 0C STA A XHI
 E04C 8D 07 BSR BYTE
 E04E B7 A0 0D STA A XLOW
 E051 FE A0 0C LDX XHI (X) ADDRESS WE BUILT
 E054 39 RTS

 *INPUT BYTE (TWO FRAMES)
 E055 8D 53 BYTE BSR INHEX GET HEX CHAR
 E057 48 ASL A
 E058 48 ASL A
 E059 48 ASL A
 E05A 48 ASL A
 E05B 16 TAB
 E05C 8D 4C BSR INHEX
 E05E 1B ABA
 E05F 16 TAB
 E060 FB A0 0A ADD B CKSM
 E063 F7 A0 0A STA B CKSM
 E066 39 RTS

 E067 44 OUTHL LSR A OUT HEX LEFT BCD DIGIT
 E068 44 LSR A
 E069 44 LSR A
 E06A 44 LSR A

 E06B 84 0F OUTHR AND A #$F OUT HEX RIGHT BCD DIGIT
 E06D 8B 30 ADD A #$30
 E06F 81 39 CMP A #$39
 E071 23 02 BLS OUTCH
 E073 8B 07 ADD A #$7

 * OUTPUT ONE CHAR
 E075 7E E1 D1 OUTCH JMP OUTEEE
 E078 7E E1 AC INCH JMP INEEE

14

MIKBUG REV. 9 PROGRAM LISTING (continued)

 * PRINT DATA POINTED AT BY X-REG
 E07B 8D F8 PDATA2 BSR OUTCH
 E07D 08 INX
 E07E A6 00 PDATA1 LDA A X
 E080 81 04 CMP A #4
 E082 26 F7 BNE PDATA2
 E084 39 RTS STOP ON EOT

 * CHANGE MENORY (M AAAA DD NN)
 E085 8D C0 CHANGE BSR BADDR BUILD ADDRESS
 E087 CE E1 9D CHA51 LDX #MCL
 E08A 8D F2 BSR PDATA1 C/R L/F
 E08C CE A0 0C LDX #XHI
 E08F 8D 37 BSR OUT4HS PRINT ADDRESS
 E091 FE A0 0C LDX XHI
 E094 8D 34 BSR OUT2HS PRINT DATA (OLD)
 E096 FF A0 0C STX XHI SAYE DATA ADDRESS
 E099 8D DD BSR INCH INPUT ONE CHAR
 E09B 81 20 CMP A #$20
 E09D 26 E8 BNE CHA51 NOT SPACE
 E09F 8D B4 BSR BYTE INPUT NEW DATA
 E0A1 09 DEX
 E0A2 A7 00 STA A X CHANGE MEMORY
 E0A4 A1 00 CMP A X
 E0A6 27 DF BEQ CHA51 DID CHANGE
 E0A8 20 96 BRA LOAD19 NOT CHANGED

 * INPUT HEX CHAR
 E0AA 8D CC INHEX BSR INCH
 E0AC 80 30 SUB A #$30
 E0AE 2B 94 BMI C1 NOT HEX
 E0B0 81 09 CMP A #$09
 E0B2 2F 0A BLE IN1HG
 E0B4 81 11 CMP A #$11
 E0B6 2B 8C BMI C1 NOT HEX
 E0B8 81 16 CMP A #$16
 E0BA 2E 88 BGT C1 NOT HEX
 E0BC 80 07 SUB A #7
 E0BE 39 IN1HG RTS

 E0BF A6 00 OUT2H LDA A 0,X OUTPUT 2 HEX CHAR
 E0C1 8D A4 OUT2HA BSR OUTHL OUT LEFT HEX CHAR
 E0C3 A6 00 LDA A 0,X
 E0C5 08 INX
 E0C6 20 A3 BRA OUTHR OUTPUT RIGHT HEX CHAR AND R

 E0C8 8D F5 OUT4HS BSR OUT2H OUTPUT 4 HEX CHAR + SPACE
 E0CA 8D F3 OUT2HS BSR OUT2H OUTPUT 2 HEX CHAR + SPACE

15

MIKBUG REV. 9 PROGRAM LISTING (continued)

 E0CC 86 20 OUTS LDA A #$20 SPACE
 E0CE 20 A5 BRA OUTCH (BSR & RTS)

 * ENTER POWER ON SEQUENCE
 E0D0 START EQU *
 E0D0 8E A0 42 LDS #STACK
 E0D3 BF A0 08 STS SP INZ TARGET'S STACK PNTR
 * INZ PIA
 E0D6 CE 80 04 LDX #PIAD (X) POINTER TO DEVICE PIA
 E0D9 6C 00 INC 0,X SET DATA DIR PIAD
 E0DB 86 07 LDA A #$7
 E0DD A7 01 STA A 1,X INIT CON PIAS
 E0DF 6C 00 INC 0,X MARK COM LINE
 E0E1 A7 02 STA A 2,X SET DATA DIR PIADB
 E0E3 86 34 CONTRL LDA A #$34
 E0E5 B7 80 07 STA A PIASB SET CONTROL PIASB TURN READ
 E0E8 B7 80 06 STA A PIADB SET TIMER INTERVAL
 E0EB 8E A0 42 LDS #STACK SET CONTRL STACK POINTER
 E0EE CE E1 9C LDX #MCLOFF

 E0F1 8D 8B BSR PDATA1 PRINT DATA STRING

 E0F3 8D 83 BSR INCH READ CHARACTER
 E0F5 16 TAB
 E0F6 8D D4 BSR OUTS PRINT SPACE
 E0F8 C1 4C CMP B #'L
 E0FA 26 03 BNE *+5
 E0FC 7E E0 0A JMP LOAD
 E0FF C1 4D CMP B #'M
 E101 27 82 BEQ CHANGE
 E103 C1 52 CMP B #'R
 E105 27 18 BEQ PRINT STACK
 E107 C1 50 CMP B #'P
 E109 27 32 BEQ PUNCH PRINT/PUNCH
 E10B C1 47 CMP B #'G
 E10D 26 D4 BNE CONTRL
 E10F BE A0 08 LDS SP RESTORE PGM'S STACK PTR
 E112 3B RTI GO

 * ENTER FROM SOFTVARE INTERRUPT
 E113 SFE EQU *
 E113 BF A0 08 STS SP SAVE TARGET'S STACK POINTER
 * DECREMENT P-COUNTER
 E116 30 TSX
 E117 6D 06 TST 6,X
 E119 26 02 BNE *+4
 E11B 6A 05 DEC 5,X
 E11D 6A 06 DEC 6,X

 * PRINT CONTENTS OF STACK
 E11F FE A0 08 PRINT LDX SP
 E122 08 INX

16

MIKBUG REV. 9 PROGRAM LISTING (continued)

 E123 8D A5 BSR OUT2HS CONDITION CODES
 E125 8D A3 BSR OUT2HS ACC-B
 E127 8D A1 BSR OUT2HS ACC-A
 E129 8D 9D BSR OUT4HS X-REG
 E12B 8D 9B BSR OUT4HS P-COUNTER
 E12D CE A0 08 LDX #SP
 E130 8D 96 BSR OUT4HS STACK POINTER
 E132 20 AF C2 BRA CONTRL

 * PUNCH DUMP
 * PUNCH FROM BEGINING ADDRESS (BEGA) THRU ENDI
 * ADDRESS (ENDA)
 *
 E134 0D MTAPE1 FCB $D,$A,0,0,0,0,'S,'1,4 PUNCH FORMAT
 E135 0A 00
 E137 00 00
 E139 00 53
 E13B 31 04

 E13D PUNCH EQU *

 E13D 86 12 LDA A #$12 TURN TTY PUNCH ON
 E13F BD E0 75 JSR OUTCH OUT CHAR

 E142 FE A0 02 LDX BEGA
 E145 FF A0 0F STX TW TEMP BEGINING ADDRESS
 E148 B6 A0 05 PUN11 LDA A ENDA+1
 E14B B0 A0 10 SUB A TW+1
 E14E F6 A0 04 LDA B ENDA
 E151 F2 A0 0F SBC B TW
 E154 26 04 BNE PUN22
 E156 81 10 CMP A #16
 E158 25 02 BCS PUN23
 E15A 86 0F PUN22 LDA A #15
 E15C 8B 04 PUN23 ADD A #4
 E15E B7 A0 11 STA A MCONT FRAME COUNT THIS RECORD
 E161 80 03 SUB A #3
 E163 B7 A0 0E STA A TEMP BYTE COUNT THIS RECORD
 * PUNCH C/R,L/F,NULL,S,1
 E166 CE E1 34 LDX #MTAPE1
 E169 BD E0 7E JSR PDATA1
 E16C 5F CLR B ZERO CHECKSUM
 * PUNCH FRAME COUNT
 E16D CE A0 11 LDX #MCONT
 E170 8D 25 BSR PUNT2 PUNCH 2 HEX CHAR
 * PUNCH ADDRESS

17

MIKBUG REV. 9 PROGRAM LISTING (continued)

 E172 CE A0 0F LDX #TW
 E175 8D 20 BSR PUNT2
 E177 8D 1E BSR PUNT2
 * PUNCH DATA
 E179 FE A0 0F LDX TW
 E17C 8D 19 PUN32 BSR PUNT2 PUNCH ONE BYTE (2 FRAMES)
 E17E 7A A0 0E DEC TEMP DEC BYTE COUNT
 E181 26 F9 BNE PUN32
 E183 FF A0 0F STX TW
 E186 53 COM B
 E187 37 PSH B
 E188 30 TSX
 E189 8D 0C BSR PUNT2 PUNCH CHECKSUM
 E18B 33 PUL B RESTORE STACK
 E18C FE A0 0F LDX TW
 E18F 09 DEX
 E190 BC A0 04 CPX ENDA
 E193 26 B3 BNE PUN11
 E195 20 9B BRA C2 JMP TO CONTRL

 * PUNCH 2 HEX CHAR UPDATE CHECKSUM
 E197 EB 00 PUNT2 ADD B 0,X UPDATE CHECKSUM
 E199 7E E0 BF JMP OUT2H OUTPUT TWO HEX CHAR AND RTS

 E19C 13 MCLOFF FCB $13 READER OFF
 E19D 0D MCL FCB $D,$A,$14,0,0,0,'*,4 C/R,L/F,PUNCH
 E19E 0A 14
 E1A0 00 00
 E1A2 00 2A
 E1A4 04
 *
 E1A5 FF A0 12 SAV STX XTEMP
 E1A8 CE 80 04 LDX #PIAD
 E1AB 39 RTS

 *INPUT ONE CHAR INTO A-REGISTER
 E1AC 37 INEEE PSH B SAVE ACC-B
 E1AD 8D F6 BSR SAV SAV XR
 E1AF A6 00 IN1 LDA A 0,X LOOK FOR START BIT
 E1B1 2B FC BMI IN1
 E1B3 6F 02 CLR 2,X SET COUNTER FOR HALF BIT TI
 E1B5 8D 3C BSR DE START TIMER
 E1B7 8D 36 BSR DEL DELAY HALF BIT TIME
 E1B9 C6 04 LDA B #4 SET DEL FOR FULL BIT TIME
 E1BB E7 02 STA B 2,X
 E1BD 58 ASL B SET UP CNTR WITH 8

18

MIKBUG REV. 9 PROGRAM LISTING (continued)

 E1BE 8D 2F IN3 BSR DEL WAIT ONE CHAR TIME
 E1C0 0D SEC NARK CON LINE
 E1C1 69 00 ROL 0,X GET BIT INTO CFF
 E1C3 46 ROR A CFF TO AR
 E1C4 5A DEC B
 E1C5 26 F7 BNE IN3
 E1C7 8D 26 BSR DEL WAIT FOR STOP BIT
 E1C9 84 7F AND A #$7F RESET PARITY BIT
 E1CB 81 7F CMP A #$7F
 E1CD 27 E0 BEQ IN1 IF RUBOUT, GET NEXT CHAR
 E1CF 20 12 BRA IOUT2 GO RESTORE REG

 * OUTPUT ONE CHAR
 E1D1 37 OUTEEE PSH B SAV BR
 E1D2 8D D1 BSR SAV SAV XR
 E1D4 C6 0A IOUT LDA B #$A SET UP COUNTER
 E1D6 6A 00 DEC 0,X SET START BIT
 E1D8 8D 19 BSR DE START TIMER
 E1DA 8D 13 OUT1 BSR DEL DELAY ONE BIT TIME
 E1DC A7 00 STA A 0,X PUT OUT ONE DATA BIT
 E1DE 0D SEC SET CARRY BIT
 E1DF 46 ROR A SHIFT IN NEXT BIT
 E1E0 5A DEC B DECREMENT COUNTER
 E1E1 26 F7 BNE OUT1 TEST FOR 0
 E1E3 E6 02 IOUT2 LDA B 2,X TEST FOR STOP BITS
 E1E5 58 ASL B SHIFT BIT TO SIGN
 E1E6 2A 02 BPL IOS BRANCH FOR 1 STOP BIT
 E1E8 8D 05 BSR DEL DELAY-FOR STOP BITS
 E1EA FE A0 12 IOS LDX XTEMP RES XR
 E1ED 33 PUL B RESTORE BR
 E1EE 39 RTS

 E1EF 6D 02 DEL TST 2,X IS TIME UP
 E1F1 2A FC BPL DEL
 E1F3 6C 02 DE INC 2,X RESET TIMER
 E1F5 6A 02 DEC 2,X
 E1F7 39 RTS

 E1F8 E0 00 FDB IO
 E1FA E1 13 FDB SFE
 E1FC E0 05 FDB POWDWN
 E1FE E0 D0 FDB START
 A000 ORG $A000
 A000 IOV RMB 2 IO INTERRUPT POINTER
 A002 BEGA RMB 2 BEGINING ADDR PRINT/PUNCH
 A004 ENDA RMB 2 ENDING ADDR PRINT/PUNCH
 A006 NIO RMB 2 NMI INTERRUPT POINTER
 A008 SP RMB 1 S-HIGH
 A009 RMB 1 S-LOW
 A00A CKSM RMB 1 CHECKSUM

19

MIKBUG REV. 9 PROGRAM LISTING (continued)

 A00B BYTECT RMB 1 BYTE COUNT
 A00C XHI RMB 1 XREG HIGH
 A00D XLOW RMB 1 XREG LOW
 A00E TEMP RMB 1 CHAR COUNT (INADD)
 A00F TW RMB 2 TEMP/
 A011 MCONT RMB 1 TEMP
 A012 XTEMP RMB 2 X-REG TEMP STORAGE
 A014 RMB 46
 A042 STACK RMB 1 STACK POINTER

 END

NO ERROR(S) DETECTED

 SYMBOL TABLE:

BADDR E047 BEGA A002 BYTE E055 BYTECT A00B C1 E044
C2 E132 CHA51 E087 CHANGE E085 CKSM A00A CONTRL E0E3
DE E1F3 DEL E1EF ENDA A004 IN1 E1AF IN1HG E0BE
IN3 E1BE INCH E078 INEEE E1AC INHEX E0AA IO E000
IOS E1EA IOUT E1D4 IOUT2 E1E3 IOV A000 LOAD E00A
LOAD11 E02F LOAD15 E03B LOAD19 E040 LOAD21 E044 LOAD3 E013
MCL E19D MCLOFF E19C MCONT A011 MTAPE1 E134 NIO A006
OUT1 E1DA OUT2H E0BF OUT2HA E0C1 OUT2HS E0CA OUT4HS E0C8
OUTCH E075 OUTEEE E1D1 OUTHL E067 OUTHR E06B OUTS E0CC
PDATA1 E07E PDATA2 E07B PIAD 8004 PIADB 8006 PIAS 8005
PIASB 8007 POWDWN E005 PRINT E11F PUN11 E148 PUN22 E15A
PUN23 E15C PUN32 E17C PUNCH E13D PUNT2 E197 SAV E1A5
SFE E113 SP A008 STACK A042 START E0D0 TEMP A00E
TW A00F XHI A00C XLOW A00D XTEMP A012

20

6.0 MINIBUG REV.4 PROGRAM LISTING

 NAM MINIB
 * MINI-BUG
 * COPYWRITE 1973, MOTOROLA IMC
 * REV 004 (USED WITH MIKBUG)
 FCF4 ACIACS EQU @1176364 ACIA CONTROL/STATUS
 FCF5 ACIADA EQU ACIACS+1
 FE00 ORG $FE00
 * MINIB

 * INPUT ONE CHAR INTO A-REGISTER
 FE00 B6 FC F4 INCH LDA A ACIACS
 FE03 47 ASR A
 FE04 24 FA BCC INCH RECEIVE NOT READY
 FE06 B6 FC F5 LDA A ACIADA INPUT CHARACTER
 FE09 84 7F AND A #$7F RESET PARITY BIT
 FE0B 81 7F CMP A #$7F
 FE0D 27 F1 BEQ INCH RUBOUT; IGNORE
 FE0F 7E FE AE JMP OUTCH ECHO CHAR
 * INPUT HEX CHAR
 FE12 8D EC INHEX BSR INCH
 FE14 81 30 CMP A #$30
 FE16 2B 52 BMI C1 NOT HEX
 FE18 81 39 CMP A #$39
 FE1A 2F 0A BLE IN1HG
 FE1C 81 41 CMP A #$41
 FE1E 2B 4A BMI C1 NOT HEX
 FE20 81 46 CMP A #$46
 FE22 2E 46 BGT C1 NOT HEX
 FE24 80 07 SUB A #7
 FE26 39 IN1HG RTS

 FE27 86 D1 LOAD LDA A #$D1 TURN READER ON
 FE29 B7 FC F4 STA A ACIACS
 FE2C 86 11 LDA A #@21
 FE2E 8D 7E BSR OUTCH

 FE30 8D CE LOAD3 BSR INCH
 FE32 81 53 CMP A #'S
 FE34 26 FA BNE LOAD3 1ST CHAR NOT (S)
 FE36 8D C8 BSR INCH READ CHAR
 FE38 81 39 CMP A #'9
 FE3A 27 25 BEQ LOAD21
 FE3C 81 31 CMP A #'1
 FE3E 26 F0 BNE LOAD3 2ND CHAR NOT (1)
 FE40 7F FF 32 CLR CKSM ZERO CHECKSUM
 FE43 8D 36 BSR BYTE READ BYTE
 FE45 80 02 SUB A #2
 FE47 B7 FF 33 STA A BYTECT BYTE COUNT
 * BUILD ADDRESS
 FE4A 8D 21 BSR BADDR
 * STORE DATA
 FE4C 8D 2D LOAD11 BSR BYTE
 FE4E 7A FF 33 DEC BYTECT

21

MINIBUG REV.4 PROGRAM LISTING (continued)

 FE51 27 05 BEQ LOAD15 ZERO BYTE COUNT
 FE53 A7 00 STA A X STORE DATA
 FE55 08 INX
 FE56 20 F4 BRA LOAD11

 FE58 7C FF 32 LOAD15 INC CKSM
 FE5B 27 D3 BEQ LOAD3
 FE5D 86 3F LOAD19 LDA A #'? PRINT QUESTION MARK
 FE5F 8D 4D BSR OUTCH
 FE61 86 B1 LOAD21 LDA A #$B1 TURN READER OFF
 FE63 B7 FC F4 STA A ACIACS
 FE66 86 13 LDA A #@23
 FE68 8D 44 BSR OUTCH
 FE6A 7E FE DB C1 JMP CONTRL

 * BUILD ADDRESS
 FE6D 8D 0C BADDR BSR BYTE READ 2 FRAMES
 FE6F B7 FF 34 STA A XHI
 FE72 8D 07 BSR BYTE
 FE74 B7 FF 35 STA A XLOW
 FE77 FE FF 34 LDX XHI (X) ADDRESS WE BUILT
 FE7A 39 RTS

 * INPUT BYTE (TWO FRAMES)
 FE7B 8D 95 BYTE BSR INHEX GET HEX CHAR
 FE7D 48 ASL A
 FE7E 48 ASL A
 FE7F 48 ASL A
 FE80 48 ASL A
 FE81 16 TAB
 FE82 8D 8E BSR INHEX
 FE84 84 0F AND A #$0F MASK TO 4 BITS
 FE86 1B ABA
 FE87 16 TAB
 FE88 FB FF 32 ADD B CKSM
 FE8B F7 FF 32 STA B CKSM
 FE8E 39 RTS

 *CHANGE MEMORY (M AAAA DD NN)
 FE8F 8D DC CHANGE BSR BADDR BUILD ADDRESS
 FE91 8D 34 BSR OUTS PRINT SPACE
 FE93 8D 30 BSR OUT2HS
 FE95 8D E4 BSR BYTE
 FE97 09 DEX
 FE98 A7 00 STA A X
 FE9A A1 00 CMP A X
 FE9C 26 BF BNE LOAD19 MEMORY DID NOT CHAMSE
 FE9E 20 3B BRA CONTRL

 FEA0 44 OUTHL LSR A OUT HEX LEFT BCD DIGIT
 FEA1 44 LSR A

22

MINIBUG REV.4 PROGRAM LISTING (continued)

 FEA2 44 LSR A
 FEA3 44 LSR A

 FEA4 84 0F OUTHR AND A #$F OUT HEX RIGHT BCD DIGIT
 FEA6 8B 30 ADD A #$30
 FEA8 81 39 CMP A #$39
 FEAA 23 02 BLS OUTCH
 FEAC 8B 07 ADD A #$7

 * OUTPUT ONE CHAR
 FEAE 37 OUTCH PSH B SAVE B-REG
 FEAF F6 FC F4 OUTC1 LDA B ACIACS
 FEB2 57 ASR B
 FEB3 57 ASR B
 FEB4 24 F9 BCC OUTC1 XMIT NOT READY
 FEB6 B7 FC F5 STA A ACIADA OUTPUT CHARACTER
 FEB9 33 PUL B RESTORE B-REG
 FEBA 39 RTS

 FEBB A6 00 OUT2H LDA A 0,X OUTPUT 2 HEX CHAR
 FEBD 8D E1 BSR OUTHL OUT LEFT HEX CHAR
 FEBF A6 00 LDA A 0,X
 FEC1 8D E1 BSR OUTHR OUT RIGHT HEX CHAR
 FEC3 08 INX
 FEC4 39 RTS

 FEC5 8D F4 OUT2HS BSR OUT2H OUTPUT 2 HEX CHAR + SPACE
 FEC7 86 20 OUTS LDA A #$20 SPACE
 FEC9 20 E3 BRA OUTCH (BSR & RTS)

 * PRINT CONTENTS OF STACK.
 FECB 30 PRINT TSX
 FECC FF FF 30 STX SP SAVE STACK POINTER
 FECF C6 09 LDA B #9
 FED1 8D F2 PRINT2 BSR OUT2HS OUT 2 HEX & SPACE
 FED3 5A DEC B
 FED4 26 FB BNE PRINT2

 * ENTER POWER ON SEQUENCE
 FED6 START EQU *
 * INZ ACIA
 FED6 86 B1 LDA A #$B1 SET SYSTEM PARAMETERS
 FED8 B7 FC F4 STA A ACIACS

 FEDB 8E FF 28 CONTRL LDS #STACK SET STACK POINTER
 FEDE 86 0D LDA A #$D CARRIAGE RETURM

23

MINIBUG REV.4 PROGRAM LISTING (continued)

 FEE0 8D CC BSR OUTCH
 FEE2 86 0A LDA A #$A LINE FEED
 FEE4 8D C8 BSR OUTCH

 FEE6 BD FE 00 JSR INCH READ CHARACTER
 FEE9 16 TAB
 FEEA 8D DB BSR OUTS PRINT SPACE
 FEEC C1 4C CMP B #'L
 FEEE 26 03 BNE *+5
 FEF0 7E FE 27 JMP LOAD
 FEF3 C1 4D CMP B #'M
 FEF5 27 98 BEQ CHANGE
 FEF7 C1 50 CMP B #'P
 FEF9 27 D0 BEQ PRINT STACK
 FEFB C1 47 CMP B #'G
 FEFD 26 DC BNE CONTRL
 FEFF 3B RTI GO

 FF00 ORG $FF00
 FF00 RMB 40
 FF28 STACK RMB 1 STACK POINTER
 * REGISTERS FOR GO
 FF29 RMB 1 CONDITION CODES
 FF2A RMB 1 B ACCUMULATOR
 FF2B RMB 1 A
 FF2C RMB 1 X-HIGH
 FF2D RMB 1 X-LOW
 FF2E RMB 1 P-HIGH
 FF2F RMB 1 P-LOW
 FF30 SP RMB 1 S-HIGH
 FF31 RMB 1 S-LOW
 * END REGISTERS FOR GO
 FF32 CKSM RMB 1 CHECKSUM
 FF33 BYTECT RMB 1 BYTE COUNT
 FF34 XHI RMB 1 XREG HIGH
 FF35 XLOW RMB 1 XREG LOW
 END

NO ERROR(S) DETECTED

 SYMBOL TABLE:

ACIACS FCF4 ACIADA FCF5 BADDR FE6D BYTE FE7B BYTECT FF33
C1 FE6A CHANGE FE8F CKSM FF32 CONTRL FEDB IN1HG FE26
INCH FE00 INHEX FE12 LOAD FE27 LOAD11 FE4C LOAD15 FE58
LOAD19 FE5D LOAD21 FE61 LOAD3 FE30 OUT2H FEBB OUT2HS FEC5
OUTC1 FEAF OUTCH FEAE OUTHL FEA0 OUTHR FEA4 OUTS FEC7
PRINT FECB PRINT2 FED1 SP FF30 STACK FF28 START FED6
XHI FF34 XLOW FF35

	SYSTEMS OVERVIEW
	2.0 FEATURES
	3.0 HARDWARE CONFIGURATION
	3.1 MIKBUG Hardware
	3.2 MINIBUG Hardware, Rev. 4
	4.0 SOFTWARE OPERATION
	4.1 MIKBUG Operation
	4.1.1 RESET Function
	4.1.2 Memory Leader Function
	Checksum Error Detection
	4.1.3 Memory Examine and Change Function
	4.1.4 Print/Punch Memory Function
	4.1.5 Delay Contents of MPU Registers Function
	4.1.6 Go to User's Program Function
	4.1.7 Interrupt Request Function
	4.1.8 Non˚Maskable Interrupt Function
	4.2 MINIBUG Rev. 4 Operation
	4.2.1 RESET Function
	4.2.2 Memory Loader Function
	Checksum Error Detection
	4.2.3 Memory Examine and Change Function
	4.2.4 Display Contents of MPU Registers Function
	4.2.5 Go to User's Program Function
	5.0 MIKBUG REV. 9 PROGRAM LISTING
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)
	MIKBUG REV. 9 PROGRAM LISTING (continued)

