Multimachine Games

Ken Wasserman and Tim Stryker
Mach 2 Software
96 Hammersmith Apts
Danbury CT 06810

There you are, staring into a poor dumb tube, spend-
ing hours trying to wheedle, cajole, flatter and coax your
machine into coughing up a few more points, or maybe

into reluctantly admitting every now and then: “YOU -

WINI!(bell)(bell)!!1” How much satisfaction is there in
that, really? How much challenge? So you beat the com-
puter. So what? So the computer beat you. Who cares?
Do you ever long for a scenario something like the
following?. . . .

Tonight will be the final, deciding match of the battle
series—the winner will have won the regional computer-
club title and will be eligible for the national playoffs next
month in San Diego. As you and your worthy opponent,
both dressed in black, enter the room, a hush falls over
the gathered assembly. You approach your respective
consoles, and, at a prearranged signal from the presiding
judge, the game begins.

The screen before you contains a wealth of information
about the status and positioning of your various forces.
You have two “windows” onto the field of play, one
centered on your base, the other on your current tank.
You see no sign of your opponent or his base in either
window, for the field of play is very large: you know that
he is out there somewhere, but, as the game begins, you
have no idea where.

As you begin to move your tank out of your base, you
find that it stays centered in its own window, thereby
making previously unseen portions of the field visible to
you, while, from the point of view of your base (which is
immobile) your tank appears to move away from win-
dow center until shortly it disappears off the edge. Quick-
ly reconnoitering your base perimeter, you begin to lay
down mines to protect it from invasion. (These mines are
visible to you but not to your opponent, to whom a

Cassettes containing Flash Attack for the PET, at $15
each, and kits containing all the hardware needed to
run Flash Attack and other games on the PET, in-
cluding CB2 sound, at $15 each, are available from:
Mach 2 Software, 96 Hammersmith, Danbury CT
06810.

24 December 1980 © BYTE Publications Inc

Quickly reconnoitering your base
perimeter, you begin to lay down
mines to protect it from invasion.

square filled with one of your mines looks just like a
stretch of virgin grassland.) As you do this, the steady
clickety-click you hear from your opponent’s keyboard
tells you that he is not exactly idle either—he is probably
mining the area around his base.

Or perhaps his base is well protected by mountain

‘ranges, and he is now already actively seeking yours? Or

maybe he has decided on the decoy ploy, and is building
and mining an entirely false base to confuse you? You
have no way of knowing!

Running out of mines, you frantically return to your
base to restock, then rush out again to complete the min-
ing operation. Suddenly you hear the sound of a mine ex-
ploding. Has your opponent run across your mine field
already? Or did he, in his own haste, run afoul of one of
his own mines? Thankful you had the foresight to make
your mine fields orderly, you investigate: one of them is
missing! Your opponent's tank is now badly damaged,
but there are still four more where that one came from,
and, more important, he now has some idea as to where
your base is.

Out of mines again, and unwilling to return to base to
restock, you are unable to patch the breach—instead,
you take off after the intruder, and suddenly—there he is!
His tank appears within your tank window! You
fire—and miss—he maneuvers, fires—and hits you!

Your tank goes into condition yellow—you maneuver,
fire—and miss—fire again—a hit! His tank, which was in
condition red from having hit the mine, is completely
destroyed, but you know that the second of his supply of
five tanks has now been made available to him back at
his base, wherever that is. Quickly slipping into a nearby
forest to survey the area, you suddenly run across what
can only be his second tank!

You reason as follows: in order for his second tank to
have gotten back to this area as fast as it did, his base

Circle 17 on inquiry card. g

must be nearby. Accordingly, you ignore the fact that his
tank begins firing at you, opting instead to try to catch a
glimpse of his base in your tank window before your tank
is destroyed.

You maneuver—are hit!—your tank is now in condi-
tion red, and you find it difficult to move prop-
erly—nevertheless you forge ahead—there is his base!
You move again, and hit a mine—your tank is destroyed!
However, remembering the coordinates your tank was at
when you saw his base, you make a lightning mental con-
version from rectangular to polar coordinates, and,
shouting insults across the room to distract your oppo-
nent's attention, you swiftly key the polar data into your
angle and range registers and fire off an intercontinental
ballistic missile from your base. A high, falling whistle is
heard, followed by a colossal explosion.

A deathly quiet ensues: your condition display glows
with the word “SUPREME," while on your opponent’s
screen you know the condition to be “DEFUNCT."” You
have triumphed in the first game of tonight's seven-game
match—as you glance across to see the look of fierce
determination on the face of your opponent, you realize
that the remaining games may not be won so easily. The
judge, looking at both players, slowly raises his hands,
and the second game begins. . . .

Creating a Game

The creation of such a game may not be as far beyond
your capabilities as you might think: the above game, in-
cluding all features mentioned, and more, has already
been implemented for use on a pair of lowly 8 K-byte

FLOPPY DISK FACTORY DIRECT FLOPPY DISK FACTO
e
O
',._
O
I
L

sold exclusively under other well-known brand names.

® Save distribution costs on reversible 5.25" floppy disks,
which are 100% certified for 40 track, dual side, double
density and all other standard applications.

@ 500%p savings on 5.25" floppy disks with new factory-
direct 2.2 megabyte capacity “Diskit’’.

e Factory-direct “Diskit”, includes twelve floppy disks
and accessories, plus a head cleaner disk and solution
packaged in a bookcase binder for easy access, handling
and &torage. "'Diskit” complete for the introductory
price of only $49.50 plus $2.50 freight and handling.
Normal price $59.50. Order now and save $10.00
(CA residents add 6"2% sales tax).

e Available in hard and soft sector configurations; when
ordering indicate number of sectors — 1, 10 or 16.

)

g

2

N

<)

)

>—

ol

o

9 ® Send check or money order to:

i Factory Direct
5 P.0. Box 60759
LU}
s
0
>-
e
@)
=
(@)
g
=

¥

2]

o

>_

o

ja'%

e
L e Buy factory direct from the manufacturer of floppy disks
'._

[&)

L

o

(@

>_

o

O

Sunnyvale, CA 84088
For VISA or MasterCard call toll-free
(800) 824-7888
In Calif. (B00) 852-7777
In Alaska & Hawaii (B00) 824-7919
Ask for Operator 98

34|10 AHOLOV4 YS10 AddO14 103410 AHOLOV4 MS1a AddO14 LO3HIA Ad

YS10 AddO14 103410 AHOL3V4 XS10 AddO14 LD

26 December 1980 © BYTE Publications Inc Circle 18 on inquiry card.

Commodore PET computers, under the name of Flash
Attack. (See photos 1a and 1b.)

A pair of 16 K-byte PETs, TRS-80s, or Apple IIs should
allow the development of even more outrageous games of
this general type, perhaps involving quicksand pools,
laser weaponry, or aerial reconnaissance, to name a few
possibilities. The game could even conceivably be
generalized to include more than two players, leading to
situations in which teamwork and treachery could
become determining factors in a game’s outcome.

(1a)

(1b)

@
@
&
@
@
&
@

Photo 1: A typical game of Flash Attack fully underway. The
photos 1a and 1b show the display screens seen by each of the
two players. The two rectangular “windows” seen on each
screen represent a limited view of each player’s base and the
view from his active tank. By presenting only incomplete infor-
mation to each player, the skill necessary (along with the cor-
responding sense of accomplishment) is increased.

Circle 19 on inquiry card. e

O T T T R e e S R e N W S S L el

The game hinges on the players’
judicious use of incomplete informa-
tion.

The basic factors that go into making a game like this
interesting are threefold:

1. More than one human player is involved in the game.

Rather than having the user compete against the

machine, the machine is utilized to permit two or

more people to compete with each other in ways that
would be impossible without the aid of the machine.

Success in the game hinges on the players’ judicious

use of incomplete information. Although the game

may, in fact, be entirely deterministic in the sense
that each legal move a player proposes gets put into
effect without the intervention of any randomizing
influence, the fact that each player has only a limited

notion as to what his opponents are up to lends a

definite element of suspense and calculated risk-

taking to the game.

3. The game is played in real time: one’s options are
constrained not so much by the rules of the game as
by one’s own fleetness of hand and mind (or lack
thereof).

I

Many conventional board games, and virtually all con-
ventional card games, embody factors 1 and 2. Many
video pinball parlor games, such as Atari's Pong and

Tank, embody factors 1 and 3, while most of the rest of
the available microcomputer game software embodies
either none of these factors (computer chess, backgam-
mon, etc), factor 2 alone (Star Trek, Adventure, etc), or,
in exceptional cases, factors 2 and 3 together (real-time
Star Trek, etc).

It is interesting to note that, of all the major league
sports, the one that embodies all three of these factors
most fully is football—this may be the reason why the
sport is so overwhelmingly popular.

Bringing all three of these factors together in a single
computer game virtually requires that more than a single
console be used. Since, to most of us, a requirement for
multiple consoles is equivalent to a requirement for
multiple machines, the issue that will be addressed here
is: what is needed in the way of hardware and software to
support the implementation of multimachine games?

Two-Machine Games

In the case of two-machine games, the answer turns out
to be surprisingly simple and inexpensive. Most
microcomputers come already supplied with a general-
purpose, 8-bit, parallel I/O (input/output) port poking
out the back someplace. For those that do not, an add-on
port of this type can generally be purchased at nominal
expense. As in the PET, the port should ideally have the
property that, even though configured for output, it will
still return a correct reading of the states of the pins in-
volved when a “read” operation is performed on it.

Also, as with the PET, the port should represent the
high state upon output by means of a passive pull-up
resistor. Ports not satisfying these conditions may still be

Building Blocks for
Microcomputer Systems,
Dedicated Contirollers
and Test Equipment.

S-100 ROM,
RAM & 1/0
BOARD

ECT'’s R2I/O is an S-100 Bus |/O Board with 3 Serial
I/O Ports (UART’s), 1 Parallel I/O Port, 4 Status Ports,
2K of ROM with the 8080 Apple Monitor Program and

2K of Static RAM.
$295.00

| RM-10
$-100

RACK MOUNT
CARD CAGE

ECT's RM-10 is a rack mount 10 slot Card Cage with
Power Supply, consisting of an ECT-100 rack mount
Card Cage (19"W x 12.25"H x 8"D), the MB-10 Mother
Board (with ground plane and termination) all 10
connectors and guides and the PS-15A Power Supply
(15A @ 8V, 1.5A @ = 16V). $295.00

Specializing in Quality Microcomputer Hardware
Industrial e Educational » Small Business e Personal

EETTM Card Cages, Power Supplies, Mainframes, CPU’s, Memory, 1/0, OEM Variations
§ ELECTRONIC CONTROL TEGCHNOLOGY (201) 6s6-s080

763 Ramsey Ave., Hillside, NJ 07205

28 December 1980 © BYTE Publications Inc

Circle 20 on inquiry card.

ke ok fank

A I B A VI

=
=
=
=
e
=
=
=
=t
3
7
i
i
%
i
2
3
i
%
i
B
i
4
i
%
i
%
i
1

Listing 1: Listing of the program used to test the cable described
in figure 1.

A

e
'l

]
i
=
=
s

It

d
oy
o

LAY e
P T
]

LI

kel G kel
o CUT

DA B A R
‘
o
i

I
I

LT

e
M

e
AR

b 0 s [G
1M
(om0

E:
ey B)
i
=i @

Ll
k]
b

G
L B A

i T
L)

Dl
wiline

]
s

e LEH

KA
a1,
L]
#1

=
L3

]

ki)

i
)
SR PP M

i
i

O B
e

bt
.-

=
3
o=
E
&=
b
=

K}

W
LI e

"-l:’J I‘IL.:'

o

"
=
]

A

(WA

1)
[SILT
[ehl

used as long as there is provision made within them for
individually programming each bit position to be either
input or output (examples of the use of such ports will not
be given here). .

What is needed, then, is an arrangement that will allow
a byte at a time to be transferred from either machine to
the other. Figure 1 gives the wiring diagram for the cable
needed; as you can see, each bit position on each machine
is simply directly connected to the corresponding bit
position on the opposite machine. This is true for all bits
except for the 24 bit, labeled ASYM, which is grounded
on one machine and left floating high on the other. The
whole package, including connectors, should cost less
than $5.

Listing 1 contains a program designed to test the cable.
It is designed for use on a pair of PETs, but, with minor
modifications, it should be capable of supporting any
pair of machines with ports satisfying the conditions
discussed above. With the cable in place, and with both
machines running this program, what should happen is
that any keys hit on either machine should be displayed
on the screen of the other. Type a shift-Q (not the STOP
key) to exit the program and return to BASIC.

The three utility routines of interest here start at lines
10000, 10200, and 10400, respectively. The routine at line
10000 simply initializes the port: location 59471 is the
PET’s User Port I/O data register, while 59459 is the
register used to configure the data pins for input and out-
put. The POKE in line 10060 configures all eight pins as
output.

The SEND routine at line 10200 may be called
whenever it is desired to send a byte to the opposite

32 December 1980 © BYTE Publications Inc

e

i S E bl
z an T
i FEF i
£ =z Don
£ e 38 i
£ = £1p T e a =t T N
£ = (‘ii"g ii‘i-{{. Fii-h S S5 2 P
s 1 el N e a1 R
SRR 1M = RSL{SF:-HHE¥LIG
&= malcr SgATY RIS TD
e POEE 53471 ;imticotss
T nd o ol Lot el 4 TELEr e
ig IF PEERLASTE1 3 BHD 1
S SoAT LRI i oo s
1 ?i_s'x.E I i piifi v i T TY
3 s, T DrrolesEoA Ty DRIN; T
i ig IF FLERL 549717 Hmd? 1o
S ST diEad
28 GOTO 183218
e =T e bl =
“EE F OLFEF i:_- EFTE L pioff
mom A D TIIDLE
183548 HES ot |
5 |
i
3 £ TRIC T
£ 8 35 I i § o |
* = T . RE
i = H = if

ti]

i

n oMM
L1}
7

o

O Y R R)
i

[0 T ¥R

u

sty

]
[I
m "
l'l'
ki)
17 e

machine. However, the opposite machine must call its
own RECEIVE routine, at line 10400, in order for the
transfer to take place. There is a potential pitfall here: if,
when writing your own code to use these routines, you
create a situation in which both machines are trying to
send a byte to the other at the same time, or if both
machines try to receive a byte from the other at the same
time, both will “hang.”

The programs running on the two machines must be set
up in such a way that whenever one of them decides to
send a byte, the other realizes this and sets up to receive
it. Given this fact, the purpose of the ASYM bit in figure
1 becomes evident: it guarantees that start-up problems
will not arise when running identical copies of a single
program in both machines. Consider yourself in the posi-
tion of the program in listing 1 as you begin running;
eventually you would reach the point where you would
like to start up a dialogue with the other machine.

Question: should you send a byte to the other machine
first, or receive one? You and the other machine had bet-
ter come to complementary conclusions as to which to do
first. Solution: you use the setting of the ASYM bit to
decide. This is exactly what happens in line 210 in the
listing. If, upon reading the port contents, you find that
the 2¢ bit is high, you receive first; otherwise you send
first. From that point on, in this example, you simply
alternate sending and receiving, and everything is fine.

Let's take a closer look at what is actually involved in
transferring a byte using this scheme. The nine lines
shown in figure 1 can be broken down into four groups:

® GND. This is a signal ground, which must be present in

Circle 22 on inquiry card.)

DRCV

2’ o

8 - pie.

2 O i

e ASYM 4
MACHINE A i O 2 MACHINE B
8-BIT 1/0 PORT 3 O DATA 3 O 23 8-BIT 1/0 PORT

BT, — O 2

LT — <O 2°

GROUND
- e

Figure 1: The cable arrangement needed for connecting two PETs in game-playing configuration. Each machine runs the same pro-
gram, and exchanges relevant information, one byte at a time, with the opponent’s computer. The bit labeled 2* determines the initial
state of each machine and, thus, whether it first transmits or receives.

DRCV

)

J

—

DATA 0-3

\

0 o/

Figure 2: Timing diagram for information transfer using the cable scheme of figure 1. The transmitting computer puts information on
the DATA lines, low-order nybble first, and brings the LNR line low. The receiving computer brings the DRCV line low when the in-
formation has been accepted. The process is repeated for the high-order nybble, but HNR is used to indicate the presence of new data.
When DRCV is brought high, the transmitter and receiver functions reverse.

order for the two machines to have a common reference
voltage.

®DATA 0 thru 3. These lines, which are controlled by
the sender, carry the actual data being transferred, a nyb-
ble at a time (a nybble is half of a byte, or 4 bits).

® ASYM. This has already been discussed.

®DRCV, INR, and HﬁR (data received, low-order
nybble ready, and high-order nybble ready). These are
the so-called “handshake” lines. INR , which is a signal
from the sender to the receiver, is brought low by the
sender to indicate to the receiver that the low-order nyb-
ble of the byte being sent is now ready to be read off of
the DATA lines. AHNR , also a signal from the sender to
the receiver, is brought low by the sender to indicate to
the receiver that the high-order nybble of the byte being
sent is now ready to be read off the DATA lines.

DRCV, which is a signal from the receiver to the sender,
is brought low by the receiver once he has read the low-
order nybble off of the DATA lines, to indicate to the
sender that he is ready for the high-order nybble; DRCV
is then brought high again by the receiver once he has

34 December 1980 © BYTE Publications Inc

read the high-order nybble off of the DATA lines, to in-
dicate to the sender that the high-order nybble has been
received and that, as far as the receiver is concerned, the
transaction is complete.

Figure 2 shows a timing diagram of the whole opera-
tion. Essentially, what happens is this:

The sender puts the low-order nybble on the DATA
lines, and (by bringing INR low) says, “Here is the low-
order nybble.” The receiver reads in the low-order nyb-
ble, and (by bringing DRCV low) says, “I've got it.” The
sender then puts the high-order nybble on the DATA
lines, and (by bringing LNR high and HNR low) says,
“Here is the high-order nybble.” The receiver reads in the
high-order nybble, combines it with the low-order one to
make a complete byte, and (by bringing DRCV high
again) says, “All set. Goodbye.” The sender must then
return all lines to the high state before returning to his
caller. ‘

All lines are left in the high state except when actually
in use so that if one machine tries to send or receive while
the other is off doing something else, the first machine
will simply wait until the other is ready before proceeding

with the transfer.

The only modifications necessary for this scheme (to
handle ports lacking the previously discussed properties)
would be: to have code at the beginning of the RECEIVE
routine which configured the DRCV line for output and

the remaining lines for input; to have code at the begin-

ning of the SEND routine that configured the DRCV line
for input and the remaining lines for output; and to have
code at the ends of both routines for reconfiguring all
lines as input. The port initialization routine would also
have to be changed to initially configure all lines for input

Listing 2: Functionally the same as listing 1, this program is
tailored for the PET computer and has several utility routines
implemented in machine code.

T ¢ R S S

I LRI I P

P G W A e S P T T U T

36 December 1980 © BYTE Publications Inc

so that the ASYM bit could be sensed properly.

Although code resembling that shown in listing 1
works, it executes excruciatingly slowly under most cur-
rent implementations of BASIC. Anyone considering
writing a real-time game using these routines would be
well advised to rewrite, at a minimum, the SEND and
RECEIVE routines in machine language. Listing 2 shows a
program, tailored for the PET, which is functionally
identical to the one in listing 1: the difference is that in
listing 2 all three utility routines have been implemented
in machine code.

The subroutine at 10000 now sets up the machine code
in the PET’s “tape-2 buffer”—the SYS to 909 in line 200 is
what actually initializes the port. The USR function is in-
voked with a negative argument (as in line 240) to cause
the machine to execute the RECEIVE software . . . the
value returned by USR is that of the byte received.

When the argument to the USR function is non-
negative (as in line 230), its value is turned over to the
SEND software for transferrence to the other
machine . . . under these conditions the value returned
by USR is garbage. The ASYM bit must still be checked
from BASIC to determine whether to send first or receive
first. (See line 210.)

Putting It All Together

Just having the capability to transfer bytes back and
forth between two machines does ‘not guarantee success
in writing multimachine games. We now need a general
strategy for controlling the flow of information between
the various machines in such a way that the moves made
by each player are processed in a consistent manner by all
machines involved. Among other things, the strategy
used must ensure that all of the machines involved agree
as to the order in which the various players’ moves are to
be processed. Only one such strategy, the key-oriented
strategy, will be discussed here. Although many other ap-
proaches to the problem do exist, this one is particularly
“clean” and therefore easily debugged; it is also
reasonably efficient in both space and time.

The information transfers addressed by any general
strategy of this kind fall into two groups: those that occur
at initialization time and those that occur during the ac-
tual play of the game. The key-oriented strategy calls for
all information pertinent to the initial state of the game,
including information that may be kept secret from one
or more players, to be made known to all machines at ini-
tialization time.

Then, during play, a continuous conversation is set up
among the machines in which the only information
changing hands consists of individual keystrokes
generated by the players at their keyboards. If a player
generates no keystroke to be sent on a given pass, a zero
byte is sent out to the other machine(s) to indicate this
fact. Every machine maintains the full status of every
player but only displays the information its own player is
supposed to see.

Listing 3 shows a program, Real-Time Two-Machine
Hangman, designed to illustrate the use of the key-
oriented strategy. To keep it short, such things as instruc-
tions, gruesome representations of gallows, and so on
have been left out. The object of the game is not, as it is in
normal Hangman, to guess your opponent’s word within
a set number of letter-guesses while he sits around telling
you where your correct guesses fit in. Instead, both you
and your opponent choose words that the other tries to

Circle 23 on inquiry card. s

the cabling arrangement described above.

possessing

t wins.

1rs

ther’s word £

guess—whoever guesses the o

is, of course, only capable of
f PETs. However, with suitable alter-

rogram as shown

The p

type the
You and your

’

ines.

attach the cable
and RUN it on both mach:

To play the Hangman game,
program in,

Game Time

ters

1Icrocompu

ftware, it should be possi-

g
c
9]
g
&
o
OC
D g
m ©
2 b
(1}
O &
oS,
A
=20 o
<
Pmo
c =
(%)
§< §
g B
g 9 o
£c8
§5.2
Ewmo

t

Real-time Two-Machine Hangman in which you at-

tempt to guess your opponent’s chosen word firs

3

isting

L

E Pl

=
=

38 December 1980 © BYTE Publications Inc

opponent will each be asked to enter a word—if the
words entered are of different lengths, the program prints
an error message and reprompts both players for new
words. Once the program has accepted the two words,
any key you strike is taken to be a letter-guess directed at
your opponent’s word.

Each time you hit a key, your machine displays the
results of your guess—that is, your target word so far,
with dashes in the positions corresponding to letters not
yet guessed, and a tabulation of the letters you have tried
so far. The program automatically detects when one
player has guessed every letter in his opponent’s word,
and declares the winner accordingly.

The initialization phase of listing 3 encompasses lines
10 thru 240 and all of the subroutines appearing from line
5000 on up. During this phase, the program POKEs the
machine-language software into place, initializes the port
to the other machine, and then (in line 110) prompts its
own player for input and reads the reply into W$(1).

Then, using the ASYM bit as usual to determine
whether to send first or receive first, it essentially ex-
changes word lengths with the other machine and checks
to make sure that the two word lengths are equal. Once
satisfied that they are, the program proceeds to exchange
words with the other machine (using the subroutines at

5000 and 5100), placing the other player’s word into

W$(2). Both machines now know both players’ words.
Each machine has its own player’s word in its own copy
of W$(1) and the opposing player’s word in its own copy
of W$(2).

| R SR
MARK GORDON

COMPUTERS

DIVISION OF MARK GORDON ASSOCIATES, INC.

P.O. BOX 77, CHARLESTOWN, MASSACHUSETTS 02129
(617) 491-7505

SD SYSTEMS COMPUTER KITS

+ EXPANDORAM I (No RAMS) 169.00
+ VERSAFLOPPY CONTROLLERI .. 189.00
 SBC-100 Single Board Kit 239.00
*e Z80IStarter: . | | e e s 269.00
OTHER SPECIALS
* 16K MemoryKit 49.00
% CATModem' ..o oo s by 151.00
% Leedex Monitorcco0eeenn 109.00
% 16K Model III TRS-80.............. 859.00*
e Atari 800 ¢ il e e 779.00
% Hazeltine1410:... 699.00

To Order Call Toll-Free 1-800-343-5206

*TRS-80 is a Trademark of Tandy Corp.

ORDERING INFORMATION
We accept Visa and Mastercharge. We will ship C.0.D. certified
check or money order only. Massachusetts residents add 5 percent
sales tax.

The Company cannot be liable for pictorial or typographical inaccuracies.

40 December 1980 © BYTE Publications Inc

Circle 26 on inquiry'card.

The Play Phase

At this point, the program is ready to enter the play
phase, but first it must set the initial value of the player
select variable P to either 1 or 2, depending on the setting
of the ASYM bit. The reason for this is that the section of
code from line 300 to line 500 is used to process proposed
letters, or moves originating from both players—this is
the essence of the key-oriented strategy. The variable P,
which flips back and forth during play between 1 and 2
via the statement “P=3—P” in line 500, is used on each
pass to determine whether to attempt to get a keystroke
from one’s own keyboard (which is what the GET state-
ment in line 280 does) or to receive from the other
machine the result of its attempt to get a keystroke from
its own keyboard (which is what the assignment in line
270 does).

The value of P is also used in the main processing loop
as the index into each of the two-element arrays W$, F$,
and T$, to ensure that the proper player’s status is up-
dated as a result of the processing of the keystroke. The
net implication is that P must be initialized to 1 on one
machine and to 2 on the other so that the play phase will
begin correctly. :

During the play phase, then, the program simply cir-
culates in the main processing loop shown, alternating
the value of P back and forth between 1 and 2 on each
pass. When P is 2, the machine’s own keyboard is inter-
rogated, the resulting keystroke (or a zero if the resulting
keystroke was null) is sent off to the other machine, and
the keystroke is processed by examining W$(2) for occur-
rences of it. F$(2) and T$(2) are updated accordingly and,
in lines 410 and 420, are printed out.

When P is 1, the keystroke to be processed comes from
the other machine (in order for this to happen the other
machine’s copy of P will at this point be equal to 2). The
keystroke is processed by examining W$(1) for oc-
currences of it, and F$(1) and T$(1) are updated but not
printed out, since they are of interest only to the player
on the other machine.

Checking for the end-of-game is thus very simple: as
soon as F$(P) becomes equal to W$(P), the game is over,
and the value of P for which this was the case can be used
(as it is in line 1020) to determine who won.

This is how a typical real-time two-machine game in-
volving incomplete information is implemented. Other
good candidates for implementation in this manner
would be Star Trek, Kriegspiel (a version of chess in
which neither player is ever entirely sure just where his
opponent’s pieces’ are located), and Stratego. You can
easily design entirely new Adventure games, a submarine
battle for example, using the basic approaches given here.
The possibilities are certainly more exciting and creative
than playing Battleship with pencil and graph paper.®

Circle 27 on inquiry card. =3

	601
	602
	603
	604
	605
	606
	607
	608

