Alia

O

©OMITS, Inc. 1977
First Printing, June, 1977

ﬁ

[IS OPERATING SYSTEN
DOGURTENTATION

2450 Alamo S.E./ Albuguerque, New Mexico 87106

(-

TABLE OF CONTENTS

Section

T. INTRODUCTION & & v v ¢ v v v v v o 6 e o v o s e e e e e
1-1. Introduction to this Manual+« v v v v v o
1-2. Loading and Initializing DOS « « v ¢ v ¢ ¢ v v o &
1-3. Program Development Procedure
1-4. Notation and Definitions o ..
1-5. DOS Input Conventions « .+« . e e s e

2, MONITOR e e e e e e e e e e e e e e e e
2-1. Introduction to the Monitor ., e e e e
2-2. Input from the Console e e e e e e e
2-3. Monitor Coimands . . . « « ¢« « « « 4 . e e e e e .
2-4., Monitor Error Messages . . « + v ¢ v o 4 v 4 e e 0w e e
2-5. File Name Conventions . . . « v ¢ ¢« ¢ o v o ¢ o 0 v o o

3. TEXT EDITOR e e e e e e e e e e e e e e
3-T. Introduction . . . v & v v v v 0 o v 0 e e e e e
3-2. EditCommands Ve e e e e e e s

4, ASSEMBLER . v v v v vt e e e e e e e e e e e e e

4-1, Statements . . . v ¢« i 0 i h e e e e e e e e e e e e e
4-2, AdAresses . . v i v v v v e v e e e e e e e e e e e
4-3, Op-Codes e e e e e e e e e e e .
4-4, Assembler Error Messages . . . « « « « « & 4 . e e e e
5. LINKING LOADER . . . & v v v v v v v e e e o e e v e o e o a s
5-1. Introduction o0 e e e e .
5-2, Address Chaining . . . « . ¢« v v v v v v v v v v v . ..
5-3. Relocatable Object Code Module Format
B. DEBUG . & v v v v e e v e e e e e e e e e e e e e e e e e e
6-1. Introduction . . . « . ¢ ¢« ¢ v v v v v e e e e e
B-2. Display . v v v v i e e e e e e e e e e e e e e e e e
6-3. MOdify + v ¢ v v v b e e e e e e e e e e e e e e e e .
6-4. Breakpoints o . 4 v 0 e e e e e e e e e
6-5. Controlling Execution+ v ¢ o v v v v v v
6-6. Using Debug with Relocated Programs
7. MISCELLANEQUS SYSTEM PROGRAMS . . . ¢ v v v v v v v v v v v v s
/T P 1 O e e
7-2. CNSo e e e e e e e e e e e e
7-3. SYSENT . e e e e e e e e .
2T S 0 .

00s
June, 1977

ii

APPEND

ICES
ASCITI Character Codes . . « v v v v o ¢ o ¢ ¢ o o o o o ..
Disk Information e e e e e e e e
Monitor Calls v v v v v v v v 6 0 o & o 0 0 o 0 e e e e
Absolute Load Tape Format « ¢ v v ¢ v v v o v
The File Copy Utility « « + v « e e e e e e
Bootstrap Loaders < . v . o000
00S

June, 1977

ALTATR DOS DOCURTEIATIEN

SEG/IONY!
INIRODUGION

G

1. INTRODUCTION
1-1. Introduction to This Manual

The Altair Disk Operating System (DOS) is a system for developing
and running Assembly Language programs. It consists of a Monitor and
several system programs. The parts of this manual describe the various
components of the system. '

- Chapter 2--the Monitor. The Monitor provides control and disk
file management for all of DOS. Monitor Input/Output routines are avail-
able to any program running under DOS.

Chapter 3--the Text Editor. The Editor (EDIT) creates, modifies
and saves ASCII coded files. Typical Editor files include Assembly
Language programs and data.

Chapter 4--the Assembler. The Assembler (ASM) converts symbolic
Assembly Language programs into relocatable machine code modules.

Chapter 5--the Linking Loader. The Linking Loader (LINK) loads
the relocatable object code modules into memory, assigns addresses to
symbols and resolves external references.

Chapter 6--Debug. Debug is a versatile symbolic debugging program.
With Debug, the programmer can interrupt execution of a program, examine
and modify the contents of register and memory locations.

Chapter 7--Miscellaneous System Programs.

Console (CNS) transfers command of the Monitor from one terminal
device to another.

Initialize (INIT) allows the system parameters (amount of memory,
number of disks, etc.) to be changed without reloading the system.

1-2. Loading and Initializing DOS

When the computer is first turned on, there is nothing of value
in the semiconductor read/write memory. Therefore, before DOS can be
used, the Monitor must be loaded from disk. This requires another
program, the loader. The loader may reside in read-only memory or may
be loaded from paper tape or cassette.

A. Systems with a Disk Boot Loader PROM mounted in the proper

slot of a PROM Memory Card have the loader program readily

available in non-volatile memory. Use the following procedure

. to lToad DOS with the DBL PROM:
00S

June, 1577

1. Turn on the power to the computer, disk drives and peri-
pherals.
Raise STOP and RESET simultaneously and then release them.
Raise switches A15-A8 and Tower switches A7-AD.
Actuate EXAMINE.
Make sure the DOS diskette is mounted in disk drive 0,
that the door is closed and the disk has come up to speed
(approximately 5 seconds).
6. Enter sense switch settings for the terminal I/0 board
from Table 1-A. .
7. Press RUN.
DOS should start up and print MEMORY SIZE? - For the remainder
of the initialization procedure, see Section C belaw.
For systems without the DBL PROM, the loading procedure invalves
entering a bootstrap loader from the computer front panel,
running it to load a disk loader program from paper tape or
cassette and then running that loader to load the Monitor from
disk. The procedure for doing this is as follows:
1. Turn on the power to the compute? and peripheral devices.
2. Raise the STOP and RESET switches simultaneously and then
release them.
3. Make sure the terminal is on-line {on a Teletype
means the mode switch is set to LINE).
Now enter the proper loader program for the device through
which the loader tape is to be entered. The bootstrap loaders
are in Appendix F.

L3 T = N OS B V)
« s e e

TM, this

The bootstrap loaders are entered on the front panel switches
A7 - AQ. Each switch has two positions, up and down. By
convention, up is designated as 1 and down as 0. Therefore,
the eight switches represent one byte of data. Each group of
three switches, starting from the right, can represent the
digits O through 7. -The leftmest two switches represent the
digits O through 3. For examp]e,'to enter the octal number
315, the switches AQ through A7 are set to correspond to the
following tabla:

00S
June, 1977

Ve

“*_, 00s

June, 1977

Switch A7 A6 A5 Ad A3 A2 Al AQ
Position up up down down up up down up
Octal Digit 3 1 5

The data bytes of the loader programs are shown in octal and
are to be entered on AQ - A7 in this manner. To enter the
programs:

Put switches AQ - Al15 in the down position.

Raise EXAMINE.

Put the first loader program data byte in switches AQ - A7.v

Raise DEPOSIT.

Put the next data byte in AQ - A7.

Depress DEPOSIT NEXT '

Repeat steps 8 and 9 for each successive data byte until

the loader is completely entered.

Now check the loader to make sure it has been entered correctly:

11. Put switches AG - Al5 in the down position.

12. Raise EXAMINE. .

13. Check to see tbat the lights D0 - D7 correspond to the
correct data byte for the first location. A light on
indicates 1; off means 0. The rightmost three lights
correspond to the rightmost octal digit. The next three
lights represent the middle digit and the leftmost two
1ights represent the left digit.

If the data byte is correct, go to step 16.
If the data byte is not correct, go to step 14.

14. Put the correct value in switches AQ - A7.

15. Depress DEPOSIT. ’

16. Oepress EXAMINE NEXT.

17. Check each successive byte by repeating steps 13 - 16
until the whole loader is checked.

18. If there were any incorrect bytes, check the whole loader
again to see that they were corrected.

Now the paper tape or cassette labelled DISK LOADER can be read.

For the paper tape version, put the tape in the reader and make

sure it is positioned on the leader. The leader is the section

of tape at the beginning with a series of 3028 characters (3 of

O W 0 N Oy O &
o e e e e e .

8 holés punched). For the cassette version, put the cassette in
the reader and make sure it is completely rewound.

19. Put ‘switches AQ - A15 in the down position.

20. Raise EXAMINE. .

21. Enter the proper sense switch settings for the load and
terminal devices in switches A8 - A15. The rightmost four
switches contain the load device setting, and the leftmost
switches contain the setting for the terminal devices.
Table 1-A shows both the octal sense switch setting and
the load and terminal switches to be raised for each
standard Altair system peripheral. If a device is used
for interface to the terminal, the switches in the "Ter-
minal Switches" column must be raised. If the device
interfaces the peripheral through which DOS is being
loaded, the "Load Switches" are raised.

Sense Switch Terminal Load
Setting Switches Switches Channels
2sI0
(2 stop bits) 0 None None 20,21
2sI0 o
(1 stop bit) 1 A12 A8 20,21
S10 2 A13 A9 0,1
ACR 3 A13,A12 A9,A8 6,7
4P10 4 Al4 A10 40,41,
42,43
PI0 5 Al14,A12 A10,A8 4,5
Non-Standard
terminal 14
TNo terminal 15

22.

Start the loading process. If the load device is connected
to the computer through an 88-SI0 A, B or C or an 88-PI0
board, start the tape reader and then press the RUN switch
on the computer front panel. For the 2SI0 or 4PIO boards,
press RUN and then start the reader. For the ACR, rewind
and start the cassette. Listen to the signal from the

tape (through an auxiliary earphone). When the steady tone
changes to a warble, press RUN on the computer.

00s
June, 1977

s

\r

If the checksum Toader detects a loading error, it turns on
the Interrupt Enable 1ight and stores the ASCII code of an
error letter in memory location 0. The error letter is also
transmitted over all terminal data channei;. If a terminal is
connected to one of these ports, it prints the error Tetter.
The error letters are as follows:

-C Checksum error. If the checksum on the DOS disk file
does not equal the checksum generated by the loader, C
error results. The error may not occur if the diskette
is loaded again. If it does ogcur three -times consecu-
tively, the loader tape or diskette is at fault and
must be replaced.

M Memory error. Data from the disk does not store properly.
The location at which the error occurred is stored at
locations 1 and 2 absolute.

0 QOverlay error. An attempt was made to load data over
the loader.
I Invalid Load Device. The setting of the sense switches

is incorrect.
C. When the Monitor has been loaded correctly, it responds with

the first initialization question.

MEMORY SIZE?)
Here the programmer may specify the amount of memofy, in bytes,
to be used by DOS. Typing a carriage return or zero causes
DOS to use all of the read/write memory in the system. The
next question is

INTERRUPTS?
Typing Y enables input interrupts and Typing N or carriage
‘return disables them. If interrupts are enabled, special:
characters may be used to control program execution.

NOTE
Input interrupt features may be used only if the input inter-
face board is strapped to accept interrupts. See Section 2-2
for information on I/0 interrupts. If interrupts are not
strapped, the answer to the INTERRUPTS? question must be N.

0os
June, 1977

The next question is
HIGHEST DISK NUMBER?
to which the programmer responds with zero if there is one
disk in the system, 1 if there are two disks and so on. The
next question is
HOW MANY DISK FILES?
to which the programmer responds with the number of disk
files (both seduentia] and random) to be open simultaneously.
Resbonding with a carriage return sets the number of files at
zero. Finally, DOS asks
HOW MANY RANDCOM FILES?
Again, the programmer responds with a number or with a carriage
return, which specifies zero random files.
To save time, especially when a slow terminal is in use, all
of the initialization answers can be entered at once with the
parameters separated by spaces. For example:
‘ MEMORY SIZE? 0Y 120
tells DOS that
it is to use all available memory,
input interrupts are enabled,
_ there are two disk drives in the system,
two sequential and
5. no random disk files are to be open at any given time.
When DOS has been properly initialized, it prints the follow-
ing prompt message
DOS MONITOR VER x.x

W —

The Monitor prints a period to indicate that it is now ready
to receive commands.

00s
8 . June, 1377

C

1-3. Program Development Procedure

DOS is designed to allow the. translation of an Assembly language
program on ‘paper to an operating Machine Language program with a minimum
of time and effort. The process involves entering the Assembly language
program into a disk file with the Text Editor, translating the file to
Machine language with the Assembler and loading the program into memory
with the Linking Loader.

Before the process can proceed, the disks in use must be mounted
with the MNT command. To mount disk 0, the following command is used:

= MNT 0 <cr> '
where <cr> means carriage return. Other disks may be mounted in the
same command by typing their numbers after the zero, separated by spaces.

Mounting the disk(s) tells DOS the location of all the files and
free space on each disk. If an attempt is made to run a program before
the disk on which it is stored is mounted, a PROGRAM NOT FOUND error
will result. :

1. The first step in program development is to enter the program
into a disk file with the Text Editor. The Editor is loaded
from disk and run by the following command:

EDIT<cr>
When it is loaded, it prints

DOS EDITOR VER x.x

ENTER FILE NAME
to which the user replies with the name of the file to be
entered or edited. The editor then prints

ENTER DEVICE NUMBER
which is answered with the number of the disk drive where the
file is stored.
Assume that an Assembly language program called SAMP is entered
into a file on disk drive 0. The Editor is run with the fol-
lowing command:

LEDIT SAMP 0 <cr>
The file name (SAMP) and device number (disk Q) can be entered
in the EDIT command to avoid the necessity of asking the file
name and device number. The Editor searches disk drive 0 for
a file name SAMP to edit. If it finds no such fi]e,‘it prints
the following messages: ;

00s
June, 1377

CREATING FILE
00100 .
00100 is the number of the first line of the file. Now, all
_that is necessary is to enter the lines of' the program.
00100 LDA IER LOAD MULTIPLIER<cr>
00110 LHLD CAND LOAD MULTIPLICAND<cr>

After each carriage return, the next line number is generated
automatically so that the next 1ine can be entered. This
process continues until all the lines of the program have been
entered.

00340 PROD DB 0,0 <cr>

00350 END <cr>

9_0_3£Q_ <cr>
To stop the generation of line numbers, type a null line (Jjust
a <cr>). The Editor prints an asterisk (*) to indicate it is
ready to accept new commands. To check the file in order to
make sure it has been entered without error, type '

*p
This prints all of the lines on the current page with their
1ine numbers. In this example, there is only one page (see
paginb commands, p. 40 , for an explanation of program pages),
so the P command prints the whole file. The output appears as
follows:

*p
oo1ao LDA IER
00110 LHLD CAND

00120 SHFTR RAR
00130 SHFTR RAR

00240 CAND 0B 64

00250 PROD 0B 0,0
. 20s

June, 1977

/

k"

00s
June, 1977

Suppose the line at 120 was inadvertantly entered again at
1ine 130. To eliminate one of them, use the D (for Delete)
command.

*D 130 <cr>

*

It 1is not necessary to type the leading zeros in the line
number. To add another line between number 100 and 110, use
the I (for Insert) command.
*1100 _

00105 ; A COMMENT LINE <cr>

00107 <cr>
The line number specified is that of the existing line imme-
diately before the desired position of the new line. The
Editor generates a 1ine number halfway between the two existing
Tines. After typing the new line, a <cr> causes another
number to be generated halfway between the inserted 1ine and

the next existing line. New lines can be inserted in this
manner until there is no more room. Insertion of new lines
is stopped by typing & null Tline.
When the file is in satisfactory form, the Editor is exited
by typing the following command:

*E
This makes all of the changes, closes all of the files properly
and provides a backup file. The backup file is the edited
file as it appeared before the latest series of changes were
made. If the edited file is unusable for some reason, the
backup may be used to replace it.
When the program has been entered into a disk file with the
Editor, it may be submitted to the Assembler for translation
into machine language.
The Assembler is loaded and run with the following command:

-ASM <cr>
The Assembler prints

DOS_ASM VER x.x

ENTER FILE NAME ‘

! 1

200P00
£00p03
popPR6
£pP007
opPR12
£08P13
20PR14
200p17
po8p29
popp23
0ppp24
~ pPEp25
£00P3p
290033
290933
pPPR34
pPPP36
P0pp4p

The user enters the name of the Assembly language program file
and a <cr>. The Assembler then prints
ENTER ‘DEVICE NUMBER
to which the user replies with the number of the disk drive on
which the file resides and a <cr>. .
At this point, the ASsembler proceeds 1mmédiate1y to assemble
the program in the specified file. In our example, we can type
-ASM SAMP 0 <cr>
to avoid having the computer ask for the file name and drive
number.
The Assembler produces a file with the machine language program
and a listing. The listing is that of the source code (the _
input to the Assembler) along with other pertinent information.
The Assembler listing of our sample program appears‘as follows:

SAMP LISTING

272 pPpP33' PPP1PP LDA IER LOAD MULTIPLIER
£52 pEpp34' pEPIIp LHLD CAND LOAD MULTIPLICAND
p37 pPPI20 SHFTR RAR SHIFT 'ER RIGHT
322 pppp2s4' ppRI3p JNC SCAN JUMP IF NO CARRY
p77 pPP135 cMe TURN OFF CARRY
353 pPP140 . XCHG SAVE 'CAND IN C,D
P52 PppO36' PPO1SP LHLD PROD LOAD PROD IN H,L
£31 pop16p DAD. D ADD 'CAND TO PROD
p42 pppp3s’ PpplTe SHLD PROD STORE PROD
353 200189 XCHG RESTORE 'CAND
051 PpP199 SCAN DAD H SHIFT LEFT
322 pppppe' pEp29P INC SHFTR REPEAT IF NOT FINISHED
303 pppEpp PPP225 JMP PPP JUMP TO MONITOR. WHEN
ppp228 FINISHED
pap ppP23p IER DB 32
200 09D Ppp24p CAND DB 128,90
p0p PP P9025p0 PROD DB N
200269 END

The rightmest four columns are the source listing. Note that
there is not much room for comments at the end of the line.

If the comments are too long for the allotted space, the excess
is printed on the next line and operation is not affected. 00S

June, 1977

(*)

C

£os
June, 1977

The next column to the left is the Text Editor's line number.
The next two columns are the octal representation of the object
code (the output of the Assembler). If the source instruction
does not produce a machine instruction (END, for example),
this column is left blank. If the source.instruction defines
the contents of memory (DB or DW, for example), those contents
appear in the object code column. Source instructions that
produce object code instructions (LDA, for example) are repre-
sented by the octal instruction code and the address of the
operand. Addresses followed by an apostrophe are to be relo-
cated. Their actual addresses are not determined until the

. program is loaded into memory.

Finally, the leftmost column is a 1ist of the relative addresses
of the object code instructions and memory areas. If a letter
precedes the address, it indicates an error. The lettef desig-
nates the nature of the error and the position indicates the
address where the error occurred. A list of error letters and
their meanings is in section 4-4, p. 71.
If an error is detected by the Assembler, it can be corrected
by reentering the Text Editor and making the necessary changes.
The ability to pass programs rapidly from the Text Editor to
the Assembler and back makes DOS an extremely effective tool
for writing and debugging Assembly language programs.
Finally, the Linking Loader is used to load the program into
memory and execute the program. The Linking Loader is loaded
typing the following command:

. LINK <cr>
When the Linking Loader starts, it prints

DOS_LINK VER 1.0 '

%*
To load the sample program, type

*. SAMP 0 <cr>
If the file name and drive number had been omitted, LINK would
have asked for them. This command causes LINK to load our
file into memory beginning at location 240008. Other starting
addre$sps can be specified (see Linking Loader, L command, p.

13

_ 76), but the default value is adequate for our purposes. The
following command causes the program to be executed:

*X <cr>
This command causes control to be passed to whatever program
begins at location 240008. Again, other starting addresses
can be specified (see Linking Loader, X command, p. 51).
If the program does not run as expected (and that is not
improbable), the program bugs can be tracked down by Debug.
For a description of the use of Debug, see Section 6, p. 83.

1-4. Notation and Definitions
In the specification of command formats and examples, the follow-
ing notation conventions are used:

<> Angle brackets enclose information that must be
supplied by the user

L1 " Square brackets enclose information that is optional
and may be specified by the user.

<cr> Carriage return (ASCII 013) on most terminals, <cr>
is typed with the Return key.

<space> ‘a space (ASCII code 032)

Control/x where x is a character, is typed by holding down the

Control key while typing the character.

In examples, characters output by the computer are underlined.
Information typed by the user is presented exactly as it is to be typed.
A1l punctuation and spacing must be observed.

The following definitions are used throughout this manual:

byte eight bits of binary information. Memory locations

each contain 1 byte of information and the ASCII
code uses 1 byte to represent 1 character.

file set of information accessible to a program by name

or number. Program modules, data blocks and infor-
mation transferred to or from I/0 devices may all be
considered to be files. In this manual, files are
divided into two broad classes: Sequential and
Random. . '

I
1§ 00s
\ ‘ June, 1977

14

00s
June, 1977

A Sequential file is organized as a string of bytes
of information. From any point in a sequential file,
only the next byte may be accessed directly. Data
bytes are written after the last existing byte of
thé file. Sequential files can be divided into two
types, depending upon how the data bytes are inter-
preted:

a) ASCII files in which each byte represents a char-
acter according to the American Standard Code for
Information Interchange (see Appendix A for a
table of ASCII codes) and

binarz files in which the binary data are taken

as such with no code conversions applied. Two
special types of binary files are distinguished
from other binary files by their contents. Abso-
Tute files are those which conform to the Absolute
Tape Dump format in Appendix B. The Menitor's SAV
command produces absolute files. Relocatable
files conform to the relocatable object code
modyle format in Section 5-3. The Assembler pro-
duces relocatable files-which the Linking Loader
can then load into memory.

Random files are organized as a series of records,
each of which may be accessed separately from the
rest. Each record has a unique number which may be
used to read, modify or write on any record in the
file at any time. .

The various system programs follow certain conven-
tions for file names. See section 2-7 for an explan-
ation of these conventions. Appendix E shows an
example of the use of files in a DOS program.

b

~—

program

prompt

16

an ordered set of machine.and/or Assembler instruc-

tions that direct the computer to perform a given

series of operations. The two major classes of
programs are system programs and user programs.

a) system programs are stored on disk in absolute
binary files and thus may be loaded and run
simply by typing the program's name to the
Monitor. System programs run in memory imme-

- diately above the Monitor and below user programs.

b) user programs are those programs that run in high
memory above the system programs. The usual pro-
cedure for developing user programs is to con-
struct them from one or more relocatable code
modules produced by the Assembler and linked
together by the Linking Loader. For a discussion
of relocatabie modules, see Section 5-3, page 77.

When the Monitor or a system program takes control,

it prints a message indicating which program is

running and whether it is ready to receive commands.

The Monitor prompts with a period (.) which precedes

each ;dmmand. Similarly, Editor and Linking Loader

commands are typed after an asterisk (*). Debug and
the Assembler prompt only once after the program is
loaded.

The Monitor also prompts the programmer when insuf-

ficient information has been given in a command.

For example, if the programmer types

SMNT <cr>
the computer prints
ENTER DEVICE NUMBER
Typing the number and a carriage return causes the

command to be executed.

O 00s
i Sune, 1977

(/,

1-5. DOS Input Conventions
A11 input to DOS (as from a terminal) is handled through the
Monitor's input routine. This routine has several properties which set
constraints on the form of input. .
- Al11 128 ASCII characters are accepted by the input routine except
characters of the form Control/x where x is any letter. Some Control/
characters are used to control the input routine and the rest are ignored.
<cr> terminates a line. The input buffer is cleared and subsequent

input is taken as a new line. <line feed> is considered an input character.

The input buffer accepts the first 72 characters as one line of
input. If more than 72 characters are input in a line, the contents of
the buffer are discarded and a new line is begun. : '

Special characters include the following:

a) Rubout deletes the last character in the buffer. When Rubout
is typed, a backslash (\) and the last character in the buffer
are printed. Each successive Rubout prints the previous char-
acter. Typing another character prints another backslash and
the character. All of the characters between the backslashes
are deleted. If Rubout is typed with no characters in the
buffer, a <cr> is printed.

Control/U deletes the current contents of the input buffer.

c) Control/R displays the current contents of the input buffer.
Example:

EXAMPLE LENENENENINE <Control/R>

EXAMPLE LINE
Typing three rubouts deleted the characters between the back-
slashes. Typing Control/R displayed the final appearance of
the line.

d) Control/I is a tab character. When a tab is printed, spaces
are printed so that the next character is printed at the start
of the next 8 space column.

The following special characters are recognized if input interrupts

are enabled (see p. 22).

o
~

cos
June, 1977

17

18

Control/S

Control/Q

Control/C

Control/0

Causes execution of a program to pause until Control/Q
is typed. This can be used to pause during a listing

or to pause during execution of‘a program to examine
intermediate values. '
causes execution to resume after a Control/S. Con-
trol/Q has no effect if no Control/S has been typed.
causes execution of a program to be suspended and
control to be passed to the Monitor. During the
execution of certain I/0 operations (Mount, Open,
Kill, etc.), Control/C does not terminate execution
until the operation is completed.
prevents output from the computer. Execution pro-
ceeds normally, but no output is generated until
either another Control/0 is typed or another command
is requested by the Monitor or Editor. Example:
Suppose the following Editor command is typed:

*p

00100 LDA IER

00200 LHLD CAND

<Control/0>

*

The Print command action is completed, but no output

appears on the terminal until the Editor's prompt
asterisk appears, requesting another command.

Other constraints are imposed by the system programs in use and

are discussed in the descriptions of the Editor, Assembler, Debug and

miscellaneous programs. Some of the standards which apply to all of the

system programs are as follows:

a) A1l commands must be typed in upper case.

b) The fields of the command are separated by delimiters. These
delimiters inciude space, tab, comma, semicolon and colon.
Colons are used specifically to separate multiple commands on

a single line.

0es

Jun?.

i1977
!

¥

ATATR 00 BOCTHIETATION

m
- SERTION [
AT

19/(20 Blank)

C

2. THE MONITOR
2-1. Introduction to the Monitor

The Monitor is the control center of the DOS system. It is used
to load and execute system and user programs and to execute Input/
Output routines for all of the system's peripheral devices.

" The Monitor is Toaded first to load and execute all the other
system components. It remains in memory at all times, passing control
back and forth to system and user programs and providing I/0 services.

The Monitor's device-independent Input/Output system reduces pro-
gramming effort. The programmer could write a different input or output
routine for each 1/0 device used by a program. But these device handler
routines are incorporated into the Ménitor, so the programmer can perform
the desired information transfer simply by calling the Monitor. Monitor
Calls are described in detail in Appendix C.

When DOS has been loaded and initialized, the Monitor starts up
and prints the following message.

DOS MONITOR VER x.x

This message is also printed when the Monitor is entered from another
program. The period indicates that the Monitor is ready to receive
commands.
2-2. Input from the Console
Input from the console keyboard is handled by a central Monitor
routine regardless of the system program that is running at the time.
This routine provides the following special characters and functions.
Rubaout deletes the last character in the input buffer.
Typing Rubout causes a backslash (\) and the last
character in the buffer to be printed. Subsequent
Rubouts print the immediately previous character in
the buffer. When a character other than Rubout is

typed, a second backslash and the character are
printed. A1l the characters between the backslashes
. are deleted.
Backarrow («) same as Rubout

00s
June, 1677

21

Control/R

Control/u
L <er>

causes the current contents of the input buffer to

be printed on the console. Example: »
EXEMPLE LINENENIL ELPMENAMBLE<Control/R>
EXAMPLE

In this example, typing Rubout 10 times deleted the

characters between the backslashes; typing Control/R

displays the current appearance of the line.

clears the input buffer.

terminates a line of input. The current contents

of the 1ine buffer are passed to the program and

the line buffer is cleared.

If input interrupts are enabled, the following special character
functions are available:

Control/C

Contral/S

Control/Q

Control/0

suspends execution of the current program and
returns control to the Monitor.

temporarily suspends execution of a.program until
Control/Q is typed.

causes execution of a program to be resumed after
a Control/s

allows execution to proceed normally, but prevents
output to the terminal. No output is printed until
another Control/0 is typed or another command is
requested by the Monitor or Editor.

To enable interrupts on the older I/0 interface boards (P10, SIO
A, B, C), install a jumper from the IN interrupt line to PINT or, if the
Vector Interrupt board is in use, to VI7.

On newer interface boards (2SI10, 4PI0), install the jumper between
PINT or VI7 to the interrupt request line for the input channel. DOS
automatically assures that input interrupts are enabled.

For more information, see the manual for the interface board in

use.

22

00s,
June, 1977

(./

2-3. Monitor Commands
The Monitor is directed to perform its functions by commands.
The general form of a Monitor command is as follows:
<cormand code> [<field> <field> . . .]
where the command code is the three letter designation of the command
to be performed and the fields are the required operands for the
specific command. The fields are separated by spaces, tabs or other
legal delimiters. If insufficient information is given in the operand
fields for a given command, the Monitor asks for the missing information
and will not proceed until the information is typed. If the Monitor
cannot execute the requested command, it prints an error message which
indicates the reason the command could not be executed.
The following abbreviations and definitions are used in the des-
criptions of the Monitor commands:
delimiter characters that separate the fields in a command.
Legal delimiters are <space>, tab (Control/I),
. comma, semicolon and colon. '
device number of the device to be used in the command
action. The Monitor at present supports only floppy
disk drives in the commands, so the term “device" is
interchangeable with the term “drive number."

file name of the data or program file on which the
’ command action is to be performed.
list a series of device numbers or file names separated

by delimiters.
Table 2-A. Monitor Commands

Command Function

DEL <file><device> deletes the named file from the indicated device.

DIN <device><list> initializes the listed disk drives by writing the
track and sector number in each sector. Zeros are
written into each byte of each sector, destroying
any existing files and marking each sector as free.
The DOS disk is initialized at the factory and must
not be initialized again. Doing so will destroy all
system programs as well as user files.

00s
June, 1977

23

Command
DIR <device>

DSM <device list>

LOA <file><device>

MNT <device 1ist>

REN <old name>
<new name>
<device>

RUN <file><device>

SAV <file><device>
<1st location>

<last location><sa>

" table for unused sectors.

Function
Prints a directory of the files on the indicated
device. See section 2-7 for an explanation of the
file name.conventions.

Dismounts the disks on the listed device or devices.
A disk must be dismounted before it is removed from
a drive. Failure to do so may cause file link
errors the next time the disk is read.

Loads the named file into memory from the specified
device.' The file must be an absolute binary file.
The LOA command automatically adds # to the file
name.

Mounts the disks on the specified devices. The MNT
command causes the system to read each specified
diskette and creates avtab1e of unused space. When
files are created or modified, the system checks the
This command must be
given before the files on a disk may be accessed.
Renames the file <old name> on the specified device
to have a name <new name>.

Loads the named file from the specified device and
runs it. The file must be an absolute binary file.
A # sign is automatically added to the file name.
Contents of memory from the first location to the
last location are saved as an absolute binary file
With the specified name. A # sign is automatically
added to the file name. Any subsequent RUN command
causes execution to begin at <sa>.

If the input to the Monitor is not one of these commands, the
Monitor searches disk drive 0 for an absolute program file which has a

name corresponding to the input.
The following system programs are run in this manner:

and run.

24

If such a file is found, it is loaded

00s

June, 1977

C

Drive

2-4.

ASM Assembler - see chapter 4

EDIT Text Editor - see chapter 3

DEBUG Debug package - see chapter 6

LINK Linking Loader - see chapter 5 .

INIT Disk initialization program - see chapter 7

CNS Console - see chapter 7. Console allows the Monitor
command console to be changed to another
terminal.

0 must be mounted before running these programs.

Monitor Error Messages

or aM
of the
messag

Error
File N

RQCB A

Opcode

Return

Error
1

When the Monitor detects an error in the execution of a command
onitor Call, it prints an error message and terminates execution
operation. In the case of an error in a Monitor Call, the error

e is printed and control returns to the calling program.

A Monitor error message contains the following information:

Code the error codes are given in Table 2-B

umber . the number of the file that was being accessed when
. the error occurred

ddress " the address of the Request Control Block of the

Monitor Call that caused the error.

the operation code of the Monitor Call that caused
the error
Address the address to which control would have returned

had the error not occurred.
Table 2-B. Error Codes
Code Meaning
. FILE TABLE ENTRY MISSING
The file table contains entries for thirteen disk files (numbered

0 - 12) and four other I/0 files (0 - 3). If a file number other

20s
June, 1977

than these is encountered, an error occurs.
DEVICE NOT IN PHYSICAL DEVICE TABLE
The following devices are listed in the physical device table:
Teletype or Teletype compatible terminal
Audio Cassette
High-Speed Paper Tape Reader
Floppy Disk

25

10

11

26

An attempt to transfer information to or from another device
causes an error.
HANDLER NOT IN HANDLER TABLE
An attempt was made to perform an invalid operdtion on an I/0
device, for example, to output to a paper tape reader.
BOARD NOT IN I/0 TABLE
The following I/0 boards are in the I/0 table:
2510
SIO A, B, and C
4PI0
PIO
Use of other boards is not supported.
SHORT DATA TRANSFER
The end of data transfer came before the specified number of bytes
was read or written.
CHECKSUM ERROR ‘
When a program is loaded, the Monitor keeps a running sum of all
the bytes in each record. The least significant byte of this sum
is the checksum. At the end of the record, it is compared with
the checksum byte in the record. If there is a.discrepancy between
them, an error has occurred in loading the program and the Checksum
Error message is printed.
MEMORY ERROR
An attempt was made to write into a bad memory location. This
could be a non-functioning read/write memory location or a Tocation
in read-only memory.
BAD FILE NUMBER
A bad file number is one which has not been opened or which is
greater than the number of files allocated at initialization.
FILE LINK ERROR
During a disk file read, a sector was read which did not belong
to the file. A FILE LINK ERROR often occurs after a disk has been
removed from a drive without being dismounted first.
1/0 ERROR
A checksum error occurred in 18 successive disk read operations.
A checksum error on a disk read causes the disk controller auto-

matically to re-read the sector. A Disk I/0 Error indicates that
00s

June, 1977

(f\\

. the error is a permanent defect in the file, disk or disk drive.

13 BAD FILE MODE
A sequential operation was attempted on a random file or vice
versa.

14 DEVICE NOT OPEN
An attempt was made to input or output a file through a device
which had not been opened to that file.

15 DEVICE NOT ENABLED
The door of a disk drive has not been closed, or the motor of the
drive has not had time to come up to full speed.

16 DEVICE ALREADY OPEN
An attempt was made to mount a disk which has already been mounted.

7 INTERNAL ERROR

DOS became confused. Please report the circumstances of this
error to the MITS, Inc. Software Department.

20 OUT OF RANDOM BLOCKS
A11 sectors allotted for random files have been filled.
21 FILE ALREADY QPEN
An open operation was attempted on a file that was already open.
22 FILE NOT FOUND .
" The file name referred to was not found on the specified device.
23 TOO MANY FILES

An attempt was made to create a file when the disk directory was
already full.
24 MODE MISMATCH)
A command that expected a character string operand received a
number, or vice-versa. This error often occurs when the quotation
marks are left out of a character string in a command. '
25 " END OF FILE
During a read operation, an end of file mark was encountered before
the read operation was complete.

26 DISK FULL
A1l of the sectors of the disk have been used.
27 ’ BAD RECORD NUMBER

An attempt was made to refer-to a random file record that was

not in the specified file.
0os

June, 1977

27

30 FILE TABLE FULL
An attempt was made to have more than thirteen disk files or four
I/0 files open at one time.

31 Unused

32 TOO MANY OPEN DISK FILES
An attempt was made to open more disk files than were specified
at initialization. :

33 FILE ALREADY EXISTS
An attempt was made to name or rename a file with a name that
already exists in the directory.

2-5. File Name Conventions

When a directory of disk files is listed by the DIR command, the
file names are preceded by special characters that denote the file type.
These characters and their meanings are as follows:

absolute binary files. Files with this character
are produced by the Monitor's SAV command and are
used as input by the LOA and RUN commands. System
program names appear in the directory with a pound

sign (#).

* relocatable load module. These files are output
by the Assembler and used as input by the Linking
Loader.

% 1isting file. The optional source 1isting from ASM
carries this designation. ‘

& Editor source file. The output of the Editor carries
this designation.

$ Editor backup file. When a file is modified by the

Editor, the old, unmodified file is renamed to have
this designation.

Dos
28 June, 1977

These characters are supplied automatically by the system programs
and Monitor commands which c¢reate the files. Therefore, they need not
be supplied by the programmer. For example, the command

LASM MULTI 0 .
is used to assemble the file which appears in the directory as

&MULTI
Similarly, the command

SEDIT TEXT 0
creates a source file called &TEXT.

File names in the DEL and REN commands must appear exactly as they .
do in the directory. For example, the Editor backup file

$LETTER
may be deleted by

.DEL $LETTER
without affecting the source file &LETTER or any other file. -

£os »
June, 1877 29/(30 Blank)

June, 1977

ALTATR DS DOGURIENTATID

SEGUION |
TEXT EDTD

31/(32 Blank)

0

C

3. THE TEXT EBITOR
3-1. Introduction
Although the Text Editor is primarily used to create and maintain

Assembly Language program files, it can be used for any ASCII coded file.

EDIT is a line-oriented Editor, in that its commands operate on lines of
text which are addressable by number. Line numbers are assigned auto-
matically as the file is being created. A special command allows auto-
matic renumbering of Tines. The Assembler ignores EDIT Tine numbers in
its input file except when producing a source listing.

Once the system disk (on drive 0) has been mounted with the MNT
command, EDIT may be loaded and run with the following command:

-EDIT <file><device>
where <file> is the name of the file to be created or modified, and
<device> is the number of the disk where the file is stored. When EDIT
prints an asterisk (*), it is ready to accept commands. EDIT requires
at least 2 disk files to be allocated at initialization.

The Text Editor is designed to minimize memory usage by dividing
files into pages. Only cne page resides in memory at a time, while the
rest of the file remains on disk. The number, length and content of
pages are completely under the programmer's control. Access to the
pages is sequential; the paging commands refer to the next page in the
file. The B command always refers to the first page of the file, so
the Editor can go back to the beginning of a multipage file from any
point.

Edit commands are provided to add, delete and replace lines, find
and substitute character strings and modify individual 1ines. The form
-of an EDIT command is as follows:

<x> <field>[<field>] <cr>
where x stands for the EDIT command letter in use, and field is a line
number or character string, depending upon the command. The command
letter and fields are separated by delimiters.

The EDIT commands operate on individual lines or on ranges of
lines. A line is referenced by stating its number in an EDIT command.
For example,

P 150

00s
June, 1977

33

" prints line 150 on the console. A range of lines is referenced by
stating the beginning and ending lines of the range. Thus,
R 200 230
replaces lines 200 to 230, inclusive. A1l line and.range references
are to lines on the current page only. Befare a 1ine or range on another
page may be referenced, that page must be loaded into memory.
3-2. Edit Commands :
A. Inserting, Deleting and Replacing lines. The following com-
mands insert, delete and replace whole lines:

I <number><increment><cr> Inserts a new line at <number>
or the first available line
after <number>. After the <cr>,
EDIT prints <number> or, if
there is already a line at
<number>, the number of the
first available line after
<number>. A1l input up to the
next <cr> is inserted as the
new line. In the Insert mode,
the Editor automatically assigns
numbers to the lines as they are
entered. If <increment> is not
specified, the Tine number
increment is that Tast used in
an N command. If there has
been no previous N command, the
default increment is 10. After
a line is typed and a carriage
return entered, EDIT adds the
increment and checks to see
that the new line number is
less than the next existing
1ine number. If it is- not,
the increment is reduced to
half the difference between

cos

34 June, 1577

J

C

00s
June, 1977

the previous line number and
the next existing line number.
This process is repeated until
no new line numbers are possible.
Then the Iﬁsert mode s exited
and an asterisk is printed.
When a file is being created by
the Editor, there are no exist-
ing lines, 'so each line is
numbered with the specified or
default increment.
Example:
-EDIT TEST O
DOS EDITOR VER 0.1
CREATING TEST
00100 THIS IS A TEST <cr>
00110 FILE SHOWING LINE <cr>
00120 NUMBER INCREMENTS <cr>
00130 <cr>

1 *

In this example, new line num-
bers were generated after every
carriage return until a null
line (a line with no characters
before the carriage return) was
typed. Then Insert mode was

. terminated and the prompt aster-

isk printed. In the following
example, insertions are made
into file TEST:
*1110
00115 INSERT ONE <cr>
00117 INSERT TWO <cr>
00118 INSERT THREE <cr>
00119 INSERT FOUR <cr>

*

35

D <1st number> [<2nd number>] <cr>

R <1st number> <2nd number> <cr>

In each case, the increment was
halved, until it was not possible
to insert another line.

Deletes all lines from <Ist
number> to <2nd number>, inclu-
sive. If <2nd number> is omitted,
one line is deleted.

Replaces the 1ines from <lst
number> to <2nd number>, inclu-
sive, with input from the con-
sole. After the <cr>, EDIT
displays the number of the

first 1ine to be replaced. Al1l
input to the next <cr>, replaces
the line. After the next <cr>,
the number of the next line to
be replaced is displayed. Typ-
ing a null line causes that line
and the remaining lines in the
range to be deleted. If <2nd
number> is omitted, one line is
replaced.

B. Finding a String. The following commands display the next
occurrence of a character string:

F <string> <cr>

S <strin§> <cr>

36

Finds the next occurrence of
<string> on the current page.
If <string> is found, the line
in which it appears is printed.
If it is not found, an asterisk
is printed and EDIT is ready
for further commands. The
search begins on the line
immediately after the current
tine.

The same as F, except the
search can extend over page
boundaries. - 208

June, 1977

C

C.

00S
June, 1977

In-Line Editing: the Alter Command. The Alter command allows
adding, deleting or modifying characters within a Tine without
affecting the other lines in the file. The format of the
Alter command is as follows: '

A <number> <cr>
where <number> is the number of the line to be altered. The
ATter command allows the use of several subcommands which order
changes to be made. The subcommand action begins with the
next character to tﬁe right of the current position. Changes
are made from left to right. A

In the listing of subcommands below, 'n' preceding the
subcommand letter means the subcommand may be preceded by a
number which indicates the number of times the subcommand is
to be repeated. For example: '

3CABC
is equivalent to three subcommands

CA

c8

cc
in sequence.

The Alter subcommands are not echoed. When they are used,
the only output from the computer is a display of the line as
modified. .

In the examples that follow, assume the following command
has been executed:

A 100
where line 100 is in file TEST on page 35. The Alter subcom-
mands are as follows:

37

38

Command
n<space>

nC<characters>

nD

Hestring>

I<string>

Explanation
skips over and prints the next n

characters in the line. Typing
<space> displays

golo0 T
changes the next n characters in the
Tine to the specified characters.
Typing 3CHAT displays

00100 THAT
deletes the next n characters.
Typing D displays

00100 THAT
and deletes the following space.
The effect of the subcommand is not
apparent until the next subcommand
is executed.
deletes the rest of the line and
inserts the string in its place.
The string is terminated either by
<Escape> or by <cr>. (On some ter-
minals, Altmode is used rather than
Escape.) Terminating with <Escape>
allows the Alter command to receive
further subcommands. <cr> exits
Alter mode. Typing H'S NO<Escape>
dispiays

0100 THAT'S NO
inserts the string before the next
character. The string is terminated
either by <Escape> (Altmode on some
terminals) or by <cr>. Typing
<Escape> allows further subcommands
to be issued. Typing <cr> exits
Alter mode. Typing ILINE <cr> dis-
plays

00s

June, 1577

0100 THAT'S NO LINE
. and exits Alter mode.
('/ To‘demonstrate the remaining Alter subcommands, the command
" *A 100 <cr>
is executed again. This command reenters Alter mode on the
same line as before and moves the current position to the
beginning of the line.
nK<character> deletes everything up to (but not
including) the nth occurrence of the
character. If the character does
not exist, or if there are fewer
than n of them, the subcommand does
nothing. Typing KO displays
0100)
The effect of the subcommand is not
apparent until the next subcommand
is executed.
R<string> replaces the next character with the
(~/ string. The string is terminated by
<Escape> or <cr>. Typing <cr> exits
Alter mode. Typing RSOME <space>
<Escape> displays
0100 SOME
nS<character> skips over and prints all characters
up to, but not including, the nth
occurrence of <character>. If no
such character exists, or if there
are fewer than n of them, the sub-
command does nothing. Typing SN
displays
0100 SOME LI
X<string> skips to the end of the 1ine and
inserts the string at that point.
The string is terminated with <Escape>
or <cr>, <Escape> allows further
("" 20s
June, 1977

39

40

subcommands to be issued. <cr> ‘exits
Alter mode. Typing X, THAT. <cr>
displays

0100 SOME LINE, THAT:

When all of the desired changes have been ordered, Alter
command mode is exited with one of the following subcommands:

<Cr>

replaces the existing Tine with the
line as modified and exits Alter
mode. v

exits Alter mode, but makes none of
the ordered changes. The changes
are lost.

Paging commands. The amount of memory used by the Text Editor
ﬁay be minimized by dividing the file to be edited into pages
and loading one page into memory at a time. Pages are mani-
pulated by the following commands:

B

W <numbers

Miscellaneous commands:

N <increment>

Loads the first page of the file
into memory. Note that after a B
command is issued, the Tine number
is unpredictable. An additional
command (such as P <number>) is
needed to refer to any specific line
on the page.

Loads the next page of the file into
memory and saves the current page on
disk.

Loads the next page into memory and
deletes the current page

Writes the Tines currently in memory
from the first to <number> onto disk
as a page.

Renumbers all of the lines in the
file. The difference between suc-
cessive line numbers is <increment>.

00s
-June, 1977

The first line number is always

100.
P [<first number> Prints all lines from the <lst
[<second number>]] number> to the <2nd numbers, inclu-

sive. If there is no second number,
1 line is printed. If no 1ine num-
bers are given, the entire current
page is printed.

E <file name> As the Editor proceeds through the

<device number> named file making changes, it copies
the modified file into a temporary
file called EDIT.TEM. When the E
command is executed, the remaining
unmodified lines of the file are
copied into EDIT.TEM. This file is
then assigned the name of the editad
file. The first character of the
original file name is changed to §.
This provides a backup file. Any
previous backup file is deleted.
If a file name and device number are
specified in the £ command, EDIT
proceeds to edit that file. Thus,
another file may be edited without
having to reload the Editor. If
the fi}e and device are not specified,
control is passed to the Monitor.

Q <file name> Q exits to the monitor without renam-

<device numbers> ing any files. The changes made by
the Editor are ignored. The Q com-
mand allows the user to abort an
editing session without damaging any
files. The file name and device num-
ber may be specified as in the £
command to edit another file with ut
having to reload the Editor.

20s :
June, 1977 41/(42 Blank)

ALTATR DOS DOCURETTAY

SECHIION

ASSEID

eI £

IE

C

4. THE ASSEMBLER

The Assembler is a system program that translates programs from
Assembly Language into machine language. In principle, machine language
can be used to write programs for the computer. A machine language pro-
gram is one in which the instructions to the computer are represented by
binary numbers one, two or three bytes long. The practical problems
of machine language programming, however, make its use virtually impos-
sible for all but the simpiest programs. First, it is difficult to
remember all of the binary machine language codes and enter them into
the computer without error. Second, machine language requ res the pro-
grammer to remember all of the addresses in the program a:i refer to
them expliicitly. Finally, if a machine language program does not work
as desired, it is extremely difficult to determine what went wrong.

Assembly language programming is preferable to machine language pro-
gramming because it avoids all of these difficulties. Machine instruc-
tions are referred to in Assembly language by mnemonics that are des-
criptive of the operation and that are re]at1vé1y easy to remember.
Addresses can be specified explicitly, but they can also be referred to
symbolically. That is, a memory location can be given a label and
referred to subsequently simply by mentioning that label. Finally,
Assembly language provides the programmer with a complement of error
messages that make the process of debugging much easier than in machine
language programming.

The DOS Assembler translates Assembly Language to machine language
by means of a two step process. In the first step, the Assembler reads
the Assembly Language program and assigns addresses to all of the sym-

bols. In the second step, the program is read again and the instructions

are converted to their machine language equivalents. On this second
‘pass through the program, the program m y be listed on the terminal or
in a disk file. If the Assembler detects an error in the
program, the place where the error occurred is marked in the listing
with a letter that indicates the nature of the error.

Once the system disk is mounted in drive 0, the Assembler is run by
typing the following command to the Monitor:

. ASM <file name> <device> [<device type> <device number>]
where the <file name> is the name of the disk file that contains the

00s
June, 1977

45

source program and <device> is the number of the drive where that file
resides. If a <device type> is specified, an Assembler listing is
written in a file on the specified device. If the <device type>.is TTY,
the Tisting is printed on the terminal; if the <device type> is FDS, it
is sent to floppy disk. The name of the listing disk file is the file
name in the ASM command preceded by a percent sign (%). The following
message is printed on the terminal upon termination of the assembly:

xxxxx ERRORS DETECTED
where xxxxx is the number (in octal) of errors encountered in the pro-
gram.

The machine language, object code module that results from the
Assembler's action is written on the same disk as the source code. The
name of the object code file is the <file name> preceded by an asterisk
(*). For example, after the following command is executed:

.ASM SOURCE 0 FDS 1
the object code file is named *SOQURCE and is written on disk 0. The
listing of the source program is named %SOURCE and resides on disk 1.

When the assembly and listing are complete, the Assembler prints

ANY MORE ASSEMBLIES?
Typing "Y" causes the Assembler to start over and ask for the new file
name, device number and. listing file parameters. Thus, another file may
be assembled without reloading the assembler. Typing N or <cr> exits
the Assembler and returns control to the Monitor.

4-1. Statements

The fundamental unit of an Assembly Language program is the state-
ment, whose form is as follows:

[label] ~<op-code> <operand> [,<operand>] [comment]
The label is a tag by which other statements in the program can refer
to this statement. Not all statements in a program need to be labelled.
Since program execution proceeds normally in order from the lowest memory
Tocation to the highest, statements that need to be executed in normal
sequence need not carry labels. If, on the other hand, a statement needs
to be executed out of normal order, it must carry a label. Such out-of-
order execution is called branching and it is particularly important in
programmed decision making and loops. Labels can also be used to refer

cos
46 . June, 1977

C

to memory locations for storing data. This use will be discussed more
fully in section 4-2B below.

The op-code is the mnemonic of the machine instruction or Assembler
pseudo-operation to be performed by the statement. Machine instruction
op-codes are translated by the Assembler into machine language instruc-
tions. Assembler pseudo-ops are not translated, but direct the Assembler
itself to allocate storage areas, set up special addresses, etc.

The gp-code is followed by one ar more operands, depending upon
the nature of the instruction. An c.erand is an address - specified in
any one of several manners - where the computer is to find the data to
be operated upon. In the case of an ADC (add with carry) instruction,
for example, the operand is the address of the location whose contents
are to be added to the accumulator. In the MOV (above) instruction, the
two operands are the addresses of the location from which a data byte is
to be taken and to whict it is to be moved.

Comment may be added to the end of a statement if they are separated
from the rest of the statement by a semicolon. Comments are ignored by
the Assembler, but they do appear in the Assembler listing and may thus
be used by the programmer for documentation and explanation.

4-2. Addresses

A program is a series of statements that are stored in memory and
executed either in the order in which they are stored or in sequence
directed by statements in the program itself. The data operated upon by
the program or used to direct the program's actions is stored in memory
and referred to by the addresses of the locations in which it is stored.
Therefore, addresses are used both to control execution of the program
and to manipulate data. Much of the versatility of the Assembly Language
programming system in DOS results from the various ways in which addresses
may be represented and modified.

The DOS Assembler recognizes addresses in three major forms;
constants, labels and address expressions.

A. Constants. A constant is an address that is stated explicitly

as a number. For example, the instruction
JMP 23000

00s
June, 1977 47

48

causes execution to proceed from the location whose address is
23000 decimal. A constant address may be expressed in octal,
decimal or hexadecimal notation.

1.

Octal address constants are strings of octal characters
(0 - 7) whose first character is zero.. The allowable
range of values is -01777777 to 01777777.
Examples:

0377

01345

017740
Decimal address constants are strings of dééima] digits
(0 - 9) without a leading zero. The allowed range is
-65536 to 65536. Examples:

255

1024

23000
Hexadecimal address constants have the following form:

X'hhhh'
where h is any hexadecimal digit (0 - 9, A - F). The
allowed range is -X'FFFF' to X'FFFF'. Examples:

X'FooQ*

X'2300'

X'0Q0F!
Character address constants have the following form:

e
where x is any ASCII character except ("). The characters
are translated into binary according to their ASCII codes
and the resulting two-byte quantity makes up the address.
Examp es:

npq

gz

g

Labels. When a statement is labelled, the label is entered
into the symbol table in the Assembler along with the address
of the statement. Any subsequent statement can then use the
label to represent that address. Two types of labels can be
used in the DOS Assembler; names and program points.

00s
June, 1977

C

00S
June, 1977

Names are strings of up to 6 alphanumeric characters.
The first character must be a letter and the subsequent
characters may be letters, numbers or dollar signs.
Examples:

SHIFT

LBL1

ASOUT
The usual use of labels is to refer to a statement by
name. For example:

SHIFT RAR
JNC SHIFT

The operand of the jump instruction tells the computer to
branch back to the RAR (rotate right) instruction if there
is no carry out of the shift. If there is a carry, execu-'
tion proceeds with the next instruction after the jump.

Data bytes can bear labeis as well. For example:

ADC ADDEND

ADDEND 0B 255
These instructions add the contents of location ADDEND to
the accumulator with carry. In this example, the contents
of ADDEND have the value 255 decimal.

- For the purpases of clarity and ease of use, names
should be systematically applied. That is, they should be
Togically related to the statements or data locations they
represent and should be easily distinguishable from other
names in the program.

Sometimes, short branches and lcops require statements to

be labelled, but those labels are not important to the.whole

program. Rather than filling up the symbol table with unique

49

50

names, the programmer may prefer to label those statements with
program points.
2. Program points are special labels with the follawing form:
.X
where x is any letter. A letter may be used any number
of times in a single program. Unlike names, program points
may be referred to in two ways. The program point
reference -x refers to the most recently encountered
program point with letter x. The program point reference
+x refers to the next program point in the program
with the letter x. Therefore, while any number of
statements may be labelled with the same program point,
a statement may only refer to the two program points
bracketting it in the program.
Address Expressions. The DOS Assembler allows addresses to be
specified relative to other addresses. For example, to refer
to the fourth location after the location labelled LOC, the
following expression can be used:
LOC+4 i
Expressions of this form are called address expressions.
Address expressions may be comprised of any of the following:
" Name
Constant
Program point reference
Address expression + constant
The sixteen bit values of the names, constants; program point
references and address expression; are combined and truncated
to 16 bits to form the value of the final address axpression.

00s
dJune, 1377

J

C

D0s
June, 1977

Example:

SHIFT+5

+A-010

LOC+X'F!

Special Addresses. The DOS Assembler allows certain addresses

to be referred to directly with special notation.

* indicates the present contents of the location counter.
That is, * refers to the address of the current instruc-
tion or the current data address.

Registers may be addressed symbolically by name. There-
fore, such instructions as

Mov H,A
are interpreted to refer to the correct registers.

Addressing Modes. The addresses of statements or data loca-

tions are specified in one of five different modes. The DOS

Assembler addressing modes are Absolute, Relative, Common,

Data and External. .

Absolute addresses are the actual hardware addresses of
the designated locations. Address constants in themselves
(not in address expressions) refer to absolute mode addresses.
If an absolute mode address is specified, all of the other
addresses in the program must be relocated to fit it.

Relative addresses are relocated by the action of the
Linking Loader. Unless otherwise specified, all symbolic
addresses (names, program points, address expressions) are in
Relative mode. To calculate a Relative mode address, the
Assembler calculates a displacement which the Linking Loader
adds to a relocation base address when the program is loaded.
In this way, the loader can load the program anywhere in
memory and all the addresses bear the correct relation to
each other.

An External mode address is one that refers to a location
in another program. A name must be mentioned in an EXT state-
ment before it can be used as an External mode address.
External addresses allow a program to use routines or data in
another program.

51

Data and Common mode addresses refer to separate blocks
of memory locations that may or may not be contiguous with the
programs which make the references. Data-mode addresses are
so designated by being mentioned in a DAT statement. Common
mode items are designated by CMN statements. The difference
between Common and Data addresses is that Data addresses may
only be referenced by the program in which they are defined,
whereas Common mode addresses are available to any program.

In addition, several Common hlocks can exist simultaneously and

be referred to by name.
In an address expression, the constituent addresses may

have different modes. Any mode expression combined with an
Absolute mode address has the mode of the expression. The
difference -of two expressions of the same mode is of Absolute
mode.

4-3. (Qp-Codes

Op-codes are of two types. One type, the machine codes, are the
mnemonic expressions of the 8080 instructions. These op-codes and their
associated operands are discussed in section A, below, which is reprinted
from the Intel 8080 Microcomputer System Users' Manual. The Assembler
can use any address expression to derive the required address for direct
or immediate addressing instructions. Register instructions can use any
address expression as long as its value is the address of a register
(0 - 7 absolute). Before a register indirect mode instruction may be
used, the register pair must be loaded with an address. Any address
expraession can be used to supply that address.

0os

52 : June, 1877

A computer, no matter how sophisticated, can only

do what it is “told”’ to do. One ““teils” the computer what .

to do via a series of coded instructions referred to as a Pro-
gram. The realm of the programmer is referred to as Soft-
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer’s software refers to all of
the programs that have been written for that computer.

When a computer is designed, the enginesrs provide
the Cantral Processing Unit (CPU) with the ability to per-
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Conseguently,
the operations that can be performed by a CPU define the
computer’s Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com-
puters implement certain arithmetic operations in their in-
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con-
tents of two registers) and register operate instructions {e.g.,
increment a register} are included in the instruction set. A
computer’s instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an /O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, junlnp to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can “‘tell” the com-
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1’s and 0’s), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

00s
June, 1977

are programs availabie which convert the programming !an-f
guage instructions into machine code that can be inter-!
preted by the processor.

One type of programming language is Assembly Lan-
guage, A unique assembly language mnemonic is assigned to|
each of the computer’s instructions. The programmer can|
write a program (catled the Source Program) using thesel
mnemonics and certain operands; the source program is
then converted into machine instructions (cailed the Obiject;
Code). Each assembly language instruction is converted into!
one machine code instruction {1 or more bytes) by an|
Assembier program. Assembly languages are usually ma-!
chine dependent (i.e., they are usuaily able to run on only:
one type of computer).

THE 8080 INSTRUCTION SET

The 8080 instruction set includes five different types|
of instructions:

« Data Transfer Group—move data between registers.
or between memory and registers

e Arithmetic Group — add, subtract, increment or
decrement data in registers or in memory

o Logical Group — AND, OR, EXCLUSIVE-OR,
compare, rotate or complement data in registers
or in memory

o . Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

e Stack, 1/0 and Machine Control Group — includes
1/0 instructions, as weil as instructions for main-
taining the stack and internal control flags.

Instruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti:
ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory,

53

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-only memory {ROM)

elements and random-access memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary

integers:
DATA WORD

i
D7'Ds'05'D4ID3]Dz D1|Do
MSB LSB

When a register or data word contains a binary num-
ber, it is necessary to establish the order in which the bits
of the number are written. in the Intel 8080, BIT O is re-
ferred to as the Least Significant Bit (LSB), and BIT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MsB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions,
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

1071 1T 7 T lDolOpCode
Two-Byte Instructions
ByeOne D7 ' | IR
et [or] T 7 7 Tea[RR
Three-Byte Instructions
Byte One | Dyl T el Dg] Op Code
Byte Two [Dy LI B B B Do l Data
Byte Threei Dy IR DOJ} oArc:ich'ess

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When muiti-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, foliowed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

® Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

® Register — The instruction specifies the register or

register-pair in which the data is located.
® Register Indirect — The instruction specifies a reg-
54 ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

o Immediate — The instruction contains the data it-
self. This is either an 8-bit quantity or a
16-bit quantity {least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu-
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe-
cuted in one of two ways:

e Direct — The branch instruction contains the ad-
dress of the next instruction to be exe-
cuted. (Except for the ‘RST" instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

® Register indirect — The branch instruction indi-

! cates a register-pair which contains the

address of the next instruction to be exe-
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc-
tion (usuaily used during interrupt sequences). RST in-
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit fieid.

Condition Flags:

There ara five condition flags associated with the exe-
cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is "“set” by forcing the
bit to 1; ““reset’ by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is
set; otherwise it is reset.

If the modulo 2 sum of the bits of the re-
sult of the operation is O, (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

Parity:

If the instruction resuited 1 a carry
(from addition), or a borrow \from sub-

Carry:

traction or a comparison) out of the high-

order bit, this flag is set; otherwise it is

reset.
00s

June, 1977 -

Jd

Auxiliary Carry: If the instruction caused a carry out

of bit 3 and into bit 4 of the resulting.

value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre-
ments, decrements, comparisons, and log-
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS
accurulator
addr

data

data 16
byte 2

byte 3

port

rr1r2
DDD,sss

RP

00s

MEANING

Register A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction
The third byte of the instruction
8-bit address of an 1/Q device

Qne of the registers A B,C,D.EH,L

The bit pattern designating one of the regis-
ters A,B,C,D,E,H,L (DDD=destination, SSS=
source}:

DDD or SSS REGISTER NAME

m
000
001
010
011
100
101

One of the register pairs:

rITmooOw>»

B represents the 8,C pair with B as the high-
order register and C as the low-order register;

D represents the D,E pair with D as the high-
order register and E as the low-order register;

H represents the H,L pair with H as the high-
order register and L as the low-arder register;
SP represents the 16-bit stack pointer
register.

The bit pattern designating one of the regis-
ter pairs 8,0,H,SP:

RP REGISTER PAIR
00 8-C

01 D-g

10 H-L

1 sP

June, 1877

rh

PC

sP

m

ZS,PCY,AC

+<<[>'

3

NNN

The first {(high-order) register of a designated
regi;ter pair.

The second (low-order) register of a desig-
nated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

Bit m of the register r (bits are number 7
through 0 from left to right).

The condition flags:
Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.

The contents of the memory location or reg-
isters enclosed in the parentheses.

"'Is transferred to”

Logical AND

Exclusive OR

{nclusive OR

Addition

Two's complement subtraction
Muitiplication

““Is exchanged with”

The one’s complement (e.g., (A))
The restart number Q through 7

The binary representation 000 through 111
for restart number O through 7 respectively.

Description Format:

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is de-
scribed in the following manner:

1.

The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the first
line.

. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

. The next line(s) contain a symbolic description

of the operation of the instruction.

. This is followed by a narative description of the

operation of the instruction.

. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

55

8. The last four lines contain incidental information
about the execution of the instruction. The num-
ber of machine cycles and- states required to exe-
cute the instruction are listed first. If the instruc-
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep-
arated by a slash. Next, any significant data ad-
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Condition flags are not affected by
any instruction in this group.

MOV r1, r2 {Move Register)
(r1) <= (r2)
The content of register r2 is moved to register r1,

I I] | | !

0 1 D D D S S S |
Cycles: 1
States: §
Addressing: register
Flags: none
MbV nM (Maove from memory)

(r) =< ((H) (L)
The content of the memory location, whose address
is in registers H and L., is moved to register r.

MVI r, data (Move Immediate)
(r) =~ (byte 2)
The content of byte 2 of the instruction is moved to

register r.
ol oo oo 1" 1"0
data
Cycles: 2
States: 7
Addressing: immediate

Flags: none

MVI M, data {Move to memory Emmediate)
((H) (L)) =— (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

ol ol 1T 1T ol 1T 11,

data
Cycles: 3
States: 10
Addressing: immed./reg, indirect

Flags: none

ol 1o To'o |11l
Cycles: 2
States: 7 LX! rp, data 16 (Load register pair immediate)
Addressing: reg. indirect (th) =— (byte 3)
Flags: none (rl) ~— {byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in-
struction is moved into the low-order register (rl) of
MOV M, r {Move to memory) the register pair rp.
((H} (L)) ~=— {r) T T T T T
The content of register r is moved to the memory lo- 0 0 R P 0 0 0 1
cation whose address is in registers H and L. low-order data
ol 1T 1T 1 Tols!sls| high-order data
Cycles: 2 Cycles: 3
States: 7 States: 10
Addressing: reg. indirect Addressing: immediate
Flags: none Flags: none 0
56 June, 1977

J

C

LDA addr (Load Accumulator direct)
(A) ~=— {{byte 3)(byte 2))
The cantent of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A.

o o "7y Ty Ty

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags: none

STA addr (Store Accumulator direct)
({byte 3)(byte 2)) = (A)
The content of the accumulator is moved to the
memory iocation whose address is specified in byte
. 2 and byte 3 of the instruction.

I

0I0|1|1|0

low-order addr

high-order addr

Cycles: 4
States: 13
Addressing: direct
Flags:

none

SHLD addr (Store H and L direct)
({byte 3)(byte 2)) =— (L)
{byte 3)(byte 2) + 1) ~— (Hj
The content of register L is moved to the memory lo-
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed-
ing memory location.

ool lTololol1 Ty
low-order addr
high-order addr
Cycles: 5
States: 16

Addressing: direct
Flags: none
LDAX rp (Load accumulator indirect)
(A) == ({rp))

The content of the memory location, whose address
is in the register pair rp, is moved to register A, Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

o Ty T

[0 0 R ! P 1
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
STAX rp (Store accumulator indirect)
((rp)) == (A)

The content of register A is moved to the memory lo-

cation whose address is in the register pair rp. Note:
only register pairs rp=8 (registers B and C) or rp=D

(registers D and E) may be specified.

|

otolrlelalo
LHLD addr {Load H and L direct) Cycles: 2
(L) =— ({byte 3)(byte 2)) States: 7
(H) =— ((byte 3)(byte 2) + 1) Addressing: reg. indirect
The content of the memory location, whose address Flags: none
is specified in byte 2 and byte 3 of the instruction, is
moved to register L. The content of the memory loca- XCHG (Exchange H and L with D and E)
tion at the succeeding address is moved to register H. (H) <= (D)
"o T3 7o 11 To 14 (L) =&
0 0 1 0 1 0 1 Q The contents of registers H and L are exchanged with
low-arder addr the contents of registers D and E.
high-arder addr [+ Ty To Ty To Ty
Cycles: 5 Cycles: 1
States: 16 States: 4
Addressing: direct Addressing: register
00S Flags: none Flags: none

June, 1977

Arithmetic Group:

This group of instructions performs arithmetic oper-
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxiliary
Carry flags according to the standard rules.

All subtraction operations are performed via two’s
complement arithmetic and set the carry flag to one to in-
dicate a borrow and clear it to indicate no borrow.

ADD r (Add Register)
(A) === (A) + ()
The content of register r is added to the content of the
~accumulator. The resuit is placed in the accumuiator.

ADCr {Add Register with carry)
" {A) -— (A} +(r) + (CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The

result is placed in the accumulator.

1T olol ol [sTsTs|
Cycles: 1
States: 4
Addressing: register
Flags: ZSP.CYAC
ADC M - (Add memo& with carry)

(A) =— (A) +((H) (L)) +(CY)

The content of the memory location whose addrass is
contained in the H and L registers and the content of
the CY flag are added to the accumulator, The result
is placed in the accumulator.

1Tolololols!s!s|
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,PCY,AC
ADD M (Add memory)

(A) =— (A} + ({(H)} (LY

170700
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,S,P.CY,AC
AC! data (Add immediate with carry)

The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The resuit is placed in

the accumulator.

1ol ol olol 19T
Cycles: 2
States: 7
, Addressing: reg. indirect
Flags: Z,S,P.CY,AC

AD! data
(A) =— {A) + (byte 2)

(Add immediate)

(A) == (A) + (byte 2) + (CY)

The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The resuit is placed in the

accumulator.

1T e oty Ty Tty
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,PCY,AC
SUBr (Subtract Register)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumuilator.

1T glogly

(A) ~— (A) = (r)

The content of register r is subtracted from the con-
tent of the accumutator. The resuit is placed in the
accumulator.

1
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,CY,AC

58

PiToaToliTols's's |
Cycles: 1
States: 4
Addressing: register
Flags: Z,S,P.CY,AC

00s
June, 1877

C

C

@

sugMm (Subtract memory)
(A) =— (A} = ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The resuit is placed
in the accumulator.

SBI data (Subtract immediate with borrow)
(A) =— (A) — (byte 2) = {CY) |
The contents of the second byte of the instruction ‘
and the contents of the CY flag are both subtracted |
from the accumulator. The resuit is placed in the
accumulator. !

|1‘olo'1lol1'1'ol T 1 to 1T Tty
Cycles: 2 data
States: 7
Addressing: req. indirect ‘:'S\::i:i 3
Flags: ZSP.CY.AC Addressing: immediate
Flags: 2.SP.CYAC

SUIl data (Subtract immediate)
(A) =— (A) = (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumuiator. The
resuit is piaced in the accumuiator.

1711011 7o t1T1lo
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,SP.CYAC

SBBr (Subtract Register with borrow)

(A) == (A) = (r) = (CY)

The content of register r and the content of the CY
flag are both subtracted from the accumulator. The

result is placed in the accumulator.

r1‘o'o'1'1 s's' s

Cycles: 1
States: 4
Addressing: register
Flags: Z,S,PCYAC

SB8 M (Subtract memory with borrow)
(A) -— {A) = {{H)} (L)) ~ (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are both subtracted from the accumula-
tor. The result is placed in the accumulator.

|1|0[q11|1l1'1[ﬂ

Cycles: 2
States: 7
Addressing: reg. indirect
00s° Flags: Z,5,P.CY,AC

June, 1977

INR r (Increment Register)
(r) === (r)+1
The content of register r is incremented by one.

Note: All condition flags except CY are affected.

olo]o'lol o] 1 o' o]
Cycles: 1 I
States: & .
Addressing: register I
Flags: Z,8,P.AC |

INRM (Increment memory)
((H) (L)) === ((H) (LD} + 1
The content of the memory location whose address
is contained in the H and L. registers is incremented
by one. Note: All condition flags except CY are
affected. ’

|o'o‘1 Ty I0'1'0‘0J

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: Z,S,P.AC

DCRr (Decrement Register)
(r) <— {r) =1
The content of register r is decremented by one.
Note: All condition flags except CY are affected.

Lo o o To To 11 'o "1 |
Cycles: 1
States: §
Addressing: register
Flags:

ZS,PAC j
59 |

DCR M {Decrement memory)
((H) (L)) == ((H) (L)) ~1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

ol ol T TogTy Tg Ty

Cycles: 3
States: 10
Addressing: reg. indirect

Flags: Z,S,P,AC

INX rp (Increment register pair)
(rh) (rl) === (rh) {rl) +1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

oo | R IT P 0{011'1|

Cycles: 1
States: 5
Addressing: register
Flags: none

DCX rp {Decrement register pair)
(rh} (rl) <= (rh} {rl) — 1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

0[0

RUp i Tol o Ty
Cycles: 1
States: 5
Addressing: register
Flags: none
DAD rp (Add register pair to H and L)

(H) (L) === (H) (L} + (rh) (rl)

The content of the register pair rp is added to the
content of the register pair H and L. The resuit is
ptaced in the register pair H and L, Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

DAA (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the following process:

1. If the value of the least significant 4 bits of the
accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2. if the value of the most significant 4 bits of the
accumulator is now greater than 3, or if the CY
flag is set, 6 is added to the most significant 4
bits of the accumuiator.

NOTE: All flags are affected.

[or0'1|o|of1'1.|1

Cycles: 1
States: 4
Flags: Z,5,P,CY,AC

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on condi-
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA ¢ (AND Register)
(A) =— (A) AR
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

EEERERERE s's'57

Cycles: 1
States: 4
Addressing: register

Flags: Z,8,P.CY,AC

ANA M {AND memory)
(A) == (A)A{(H) (L))
The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
piaced in the accumulator. The CY flag is cleared.

| o "o 1 |

[1‘OI1IDIOI1,1|0l

[0 ! 0 R P 1
Cycles: 3 Cycles: 2
States: 10 States: 7
Addressing: register Addressing: reg. indirect
Flags: CY Flags: Z,5,P,CY,AC
00s
60 June, 1977

C

C

(V,

ANI data (AND immediate)
(A) =— (A} A (byte 2)
" The content of the second byte of the instruction is
logically anded with the contents of the accumuiator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

T T3 T To Ty TiTy
data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z2,5,P,CY,AC
XRA ¢ {Exclusive OR Register)

(A) - (A) ¥ (r)

The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1|0]1|0|1S|SISJ
Cycles: 1
States: 4
Addressing: register
Flags: Z,5,P.CY.AC
XRA M (Exclusive OR Memory)

(A) =— (A) ¥ ((H) (L))

The content of the memory location whose address
is-contained in the H and L registers is exclusive-OR’d
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC fiags are

ORA T (OR Register)
(A) == (A) V {r}
The content of register r is inclusive-OR’d with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

(1'0'1‘1‘0 s 's 's |
Cycles: - 1
States: 4
Addressing: register
Flags: Z,S,P.CY,AC
ORAM (OR memory)

(A) = {A) V {{H) (L))

The content of the memory location whose address is
contained in the H and L registers is inclusive-OR’d
with the content of the accumuiator. The result is
placed in the accumulator. The CY and AC flags are

cleared.
]1‘0‘1'1"0'1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,8,P,CY,AC
ORI data {OR Immediate}

(A) = (A)V (byte 2)

The content of the second byte of the instruction is |
inclusive-OR‘d with the content of the accumulator. |
The result is placed in the accumulator. The CY and
AC flags are cleared.

cleared. L P o T T+ 1o
1 Tol1lolqa 1T 1T data
Cycles: 2 Cycles: ~ 2
States: 7 States: 7
Addressing: reg. indirect Addressing: immediate
Flags: Z,S,P.CY,AC Fiags: 2Z,S,P.CY AC

XR1 data {Exclusive OR immediate)
(A) =— (A) ¥ (byte 2)
The content of the second byte of the instruction is
exclusive-OR‘d with the content of the accumulator.
The resuit is placed in the accumulator. The CY and
AC flags are cleared.

CMP r (Compare Register)

{A) = (n)

The content of register r is subtracted from the ac- i
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction. |

The Z flag is set to 1if (A) = {r). The CY flag is set to |

T T 111 1o I P B I 1if (A< (). . ‘
data T To 1111 [sTsts|
Cycles: 2 Cycles: 1
States: 7 States: 4
Addressing: immediate Addressing: register
00s Flags: Z,5P.CY,AC Flags: Z,8P.CY,AC

June, 1877

61

CMP M (Compare memory) RRC
(A) = ((H) (L)

The content of the memory location whose address

is contained in the H and L registers is subtracted

from the accumulator. The accumulator remains un-

changed. The condition fiags are set as a resuit of the

subtraction. The Z flag is set to 1 if (A) = ({H) (L)).

) (Rotate right)

(AR} =— (Ap.1) ;. (A7) = (Ag)

(CY) =— (Ag)

The content of the accumulator is rotated right one
position, The high order bit and the CY flag are both
set to the value shifted out of the low order bit gpsi-
tion. Only the CY flag is affected.

The CY flag is set to 1 if {A) < ((H) (L)).

Lololalo s Py Ty Ty
BEEEEEREEEREREY Cycles: 1
States: * 4
Cycles: 2 Flags: CY
States: 7
Addressing: reg. indirect
Flags: 2,8,P,CYAC RAL (Rotate left through carry)
(An+1) = (Ap) i (CY) —=— (A7)

CPI data (Compare immediate)

(Ag) =— (CY) .
The content of the accumulator is rotated left one
position through the CY flag, The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

(A) — (byte 2)
The content of the second byte of the instruction is

BEEERERER

subtracted from the accumuiator. The condition flags
are set by the resuit of the subtraction. The Z flag is
set to 1 if (A) = (byte 2), The CY flag is set to 1 if
(A) < {byte 2).

P BP EPID B I B M A RAR
data
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,SP,CY,AC

0 0 [o]
Cycles: 1
States: 4
Flags: CY

(Rotate right through carry)
(Ap) =— (Aps1) ; (CY) =— (Ag)
(A7) <— (CY)
The content of the accumulator is rotated right one
position through the CY flag, The high order bit is set
to the CY flag and the CY flag is set to the value
shifted out of the low order bit. Oniy the CY flag is
affected.

RLC {Rotate left)

(Ant1) = (Aq) i (Ag) = (A7)

(CY) = (A7)

The content of the accumulator is rotated left one
position. The low order bit and the CY flag are both
set to the value shifted out of the high order bit posi-

tion. Only the CY flag is affected.

CMA

[¢] 0 0 1 1 1 1 1
Cycles: 1
States: 4
Flags: CY

(Complement accumuiator)
(A} ~— (A}
The contents of the accumulator are complemented
(zero bits become 1, one bits become 0}. No flags are

affected.

o loloTlag 0'1[1'1] fololy ToTy ERER
Cycles: 1 Cycles: 1
States: 4 States: 4
Flags: CY Flags:
ags ags: none 00S
62 June, 1577

cMme {Complement carry)
(CY) =— (€N

The CY flag is complemented. No other flags are

affected.
|o'0|1'1'1‘1'1'1
Cycles: 1
States: 4
Flags: CY
STC (Set carry)
{CY) ~— 1

The CY flag is set to 1. No other flags are affected.

ol ol 111 TalsTaly

Cycles: 1
States: 4
Flags: CY

L/ Branch Group:

¢

This group of instructions alter normai sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers simply per-
form the specified operation on register PC (the program
countar). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to ba executed. The conditions that may be specified are
as follows:

CONDITION

cce

NZ - notzero(Z=0) Qo0
Z - zero(Z=1) 001

NC — nocarry (CY =0) 010
C = carry (CY=1) 011

PO ~ parity odd (P =0) 100
PE — parity even (P=1) 101
P - plus(S=0) 110

M — minus(S=1) m

JMP addr {Jump)

(PC) <— (byte 3) (byte 2)
Control is transferred to the instruction whose ad-

08s
June, 1977

dress is specified in byte 3 and byte 2 of the current

instruction.
1 T1Taolololto 1!y
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

Jeondition addr
if (CCC),
(PC) == (byte 3) (byte 2)
If the specified condition is true, control is trans-
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other-
wise, control continues sequentiaily.

{Conditional jump)

1 l 1 o4 ! [of ! (o} o] ! 1 I 0

iow-order addr
high-order addr
Cycles: 3

States: 10

Addressing: immediate
Flags: none
CALL addr (Cail)

({SP} = 1) ~— (PCH)

((SPY — 2) =— (PCL)

(SP) == (SP) -2

(PC) ~— (byte 3} (byte 2)

The high-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con-
trot is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

low-order addr

high-order addr

Cycles: §
States: 17
Addressing: immediate/reg. indirect

Flags: none

63

.Ccondition addr (Condition call)
1f (CCC),

({(SP} = 1) <= {PCH)

((SP} = 2) =— (PCL)

(SP) == (SP) -2

(PC) = (byte 3) (byte 2)
If the specified condition is true, the actions specified
in the CALL instruction (see above) are performed;
otherwise, control continues sequentially.

1] celcelef i olo

low-order addr

high-order addr-

Cycles: 3/6
States: 11/17
Addressing: immediate/reg. indirect

Flags: none

RET {Return)

(PCL) —=— {(SP));

(PCH) =— ({SP) +1);

(SP) <— (SP) +2;
The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is'one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented

by 2.
1‘1]0[0i110|0]1J
Cycles: 3
States: 10
Addressing: reg, indirect
Flags: none ’
Rcondition (Conditional return)
If (CCC),
(PCL) —— ({SP})

(PCH) = ({SP) + 1)

(SP) =— (SP) +2
If the specified condition is true, the actions specified
in the RET instruction (see above) are performed;
otherwise, control continues sequentially.

1Pl el celc]oloTo
Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none -

64

RSTn (Restart)
((SP) = 1) =— (PCH)
((SP) - 2) =— (PCL)
(SP) =— (SP) -2
(PC) ~— 8= (NNN)
The high‘-brder eight bits of the next instruction ad-
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad-
dress -are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad-
dress is eight times the content of NNN.

1 ! 1 N I N ! N 1 ! 1 ' 1
Cycles: 3
States: 11
Addressing: reg. indirect

Flags: none

151413121110 9 8 7 6 5 4 3 2 1 0
Lofofofafofalofofofo[n[n]n]o]o]0]

Program Counter After Restart

(Jump H and L indirect —~ move H and L to PC)
(PCH) = (H)
{PCL) =— (L}
The content of register H is moved to the high-order
eight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

PCHL

1 Ty T Ty T Ty Ty
Cycles: 1
States: 5
Addressing: register
Flags: none
cos
Juna. 1977

Stack, 1/0, and Machine Control Group:

This group of instructions performs [/Q, manipulates
the Stack, and alters internal control fiags.

(Unless otherwise specified, condition flags are not
affacted by any instructions in this group.

PUSH rp {Push)

({SP) = 1) =<— (rh)

{{SP) = 2) <= (1)

'{SP) =— (SP) -2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg-
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

FLAG WORD

Dy Dg DOs D4 D3 Dz Dy

LRl T

POP rp {Pop)
(rl) = ((SP))
(rh) <— ({SP)} + 1)
(SP) == (SP)+2
The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg-
ister SP is incremented by 2. Nota: Register pair
rp = SP may not be specified.

r1]1!R[P' 0'1'0"1]

[+ 71 [r'r o To To 1 |

Cycles: 3
States: 11
Addressing: reg. indirect

Flags: none

PUSH PSW {Push processor status word)
({SP) — 1) == (A)
({SP) = 2)g =— (CY), ((SP} =2)1 =1
((SP) =219 =— (P}, ({SP) =2)3 = Q
((SP) — 2)4 <— (AC), ({SP) ~2)g = O
((SP} = 2)g == (2Z), {(SP} —=2)7 =— (S)
(SP) —=— (SP) =2
The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags