A Simple 2708
EPROM Programmer for
the Motorola D2 Kit

Add 2K of firmware using a handful of components that fit right on the D2 board.

Frank W. Summers
Motorola Microsystems
514 E. Carmen St.
Tempe AZ 85283

dd up to 2K bytes of pro-
grammable memory to your
Motorola MEK6800-D2 kit with
this simple, low-cost 2708
EPROM programmer. Requiring
only three transistors, six resis-
tors, four capacitors and two
switches, it can be assembled
right on the D2 kit printed cir-
cuit board for approximately $7.
The reason for using the 2708-
type EPROM is simple—its cost.
The newer, larger, single supply
EPROMs are too expensive for
most home computer users. The
2708 type (with its +5V, +12V
and —5 V requirement) is avail-
able to the hobby user for less
than $10. The fact that the D2
kit has two EPROM sockets
available for 2708s makes this a
natural matchup. Just think,
you can buy a D2 kit and add
this programmer for less than
the cost of many programmers
alone!
Don’t worry about investing
in an expensive ultraviolet

EPROM eraser, because most
local computer stores offer this
service for a small fee. If this
isn’t convenient, you can build
an EPROM eraser for less than
$20 using a germicidal lamp
(G.E. #G8T5) and a suitable fix-
ture. If you try this be sure to
follow the precautions that
come with the lamp about ex-
posure to ultraviolet radiation.

Circuit Description

Only a brief description of
the circuit is offered because it
is simple. The +27 V for the
programming pulse is supplied

EPROM 510
SOCKET
PIN 19

POWER
ON
LED

510 IN2T0 e pgom

SOCKET
/ PIN 20

UNSWITCHED.
+12V

WRITE
LED

Fig. 1. Optional LEDs to indi-
cate Power On and Write mode.

138 Microcomputing February 1980

from three 9 V batteries con-
nected in series. Since the cur-
rent required from these batter-
ies is only 20 mA and only dur-
ing the actual programming of
a device, the shelf life of the
batteries will probably deter-
mine their usage. The power
switch (Sf) will remove the +5
V and +12 V from the EPROM
socket and disconnect CB2 of
PIA U21. When the EPROM
socket is-empty and S1 is off,
there is nothing connected to
the PlAs so they can be used
for other applications.

The read/write switch (S2) ap-
plies ground to pin 20 (CS/WE)
and removes the ground from
the +27 V source when in the
read position. When in the write
position pin 20 (CS/WE) is pulled
up to +12 V through a 10k re-
sistor (R1) and the ground is ap-
plied to the +27 V source. This
allows programming pulses to
be applied to pin 18 (PROG)
through transistor Q1 as con-
trolled by CB2 of the PIA (U21 of
the D2 kit).

The two 100 Ohm resistors
(R4 & R5) balance the base drive

to Q2 and Q3. The 10 Ohm resis-

tor (R6) and the .005 uF capaci-
tor (C4) limit the rise-and-fall
time of the + 27 V programming
pulse to the EPROM. All data to
and from the EPROM s through
the B side of the user PIA (U20
of the D2 kit). The addressing
for the EPROM is from the A
side of the user PIA (U20 of the
D2 kit), plus CA2 and CB2 for
address lines A8 and A9, re-
spectively.

Programming

The software to operate the
programmer requires 375 bytes
of memory and supplies these
four functions:

1. PROGRAM—programs the
EPROM from the memory loca-
tions specified.

2. VERIFY—compares the
EPROM with the memory loca-
tions specified.

3. DOWNLOAD—copies the
EPROM into the RAM locations
specified.

4. ERASED?—checks that the
specified EPROM locations are
erased.

The only inputs required for
all of these operations are: (1)
starting memory address, (2)

ending memory address and (3)
EPROM address offset. Once
these parameters are entered
they will remain the same until
changed by the user.

When any function is started
these addresses are checked
for proper range. The function
is stopped and error message
EO is displayed if the difference
between the ending and start-
ing address is greater than 1024.
If adding the EPROM offset to
this difference exceeds 1024,
error message E1 is displayed;
error message E2 indicates that
the EPROM address tried to ex-
ceed 1024 while the program
function was executing.

Obviously this should never
happen unless the programmer
program itself bombs. Error
message E3 indicates that the
EPROM and specified memory
locations didn’t agree during
the VERIFY function. Error
message E4 indicates an un-
erased location was found in
the specified EPROM locations
during the ERASED function.
The return of the JBUG prompt
. to the display means the des-
ignated function has completed
with no errors.

A programming pulse of one
millisecond duration is applied
for each EPROM address to be
programmed. If less than 1024
locations are being pro-
grammed, enough delay is add-
ed to simulate programming
the entire device. This routineis
repeated 100 times to give each
location a total of 100 millisec-
onds programming time. This
limits the duty cycle of any one
location as specified in most
manufacturers’ data books.

The programming time will
be about two minutes whether
programming 1 byte or 1024
bytes. This feature allows you
to safely program an EPROM in
short blocks, adding routines
or entire programs as desired
without erasing and reprogram-
ming the entire device each
time. Also, you can safely pro-
gram the entire EPROM from a
small RAM area by putting each
successive block of code in
RAM and programming the ap-
propriate block of EPROM.

Another safety feature is that
the D2 kit’'s keyboard is dis-
abled while programming to

avoid the possibility of the es-
cape key being pressed and
leaving the +27 V applied to
the EPROM.

The delay routine is for a sys-
tem clock frequency of 614.4
kHz. If your system has a differ-
ent clock frequency, the num-
ber of counts in the delay loop
will have to be adjusted accord-
ingly. (Change location $00A9
to $A6 for 1 MHz.)

Test Procedure

So now you have the 2708
programmer circuit added to
your D-2 kit and the software
typed in. Before you do any-
thing else you should save the
program on tape. That done,
you can use the following test
procedure to verify the circuit
and the program before plug-
ging an EPROM into the socket.
All you will need is a VOM, a
watch with a second hand and
a 2708 EPROM.

First check that the —5V is
on pin 21 of the EPROM socket.
Then check for the +12 V on
pin 19 and +5 V on pin 24 . ..
make sure they are switchable
with S1. Pin 20 should have
+12 V when the read/write
switch is on write and 0 V when
in the read position. To check
the + 27V on pin 18 the program
will have to be temporarily
changed. Change location $0035
from $8D to $3E. This is the WAI
(wait for interrupt) instruction
and will stop program execution
at this point.

With the power switch on
and the read/write switch set to
write, the voltage on pin 18
should be 0 V. Referring to the
operating instructions, start
the PROGRAM mode with the
first, last and EPROM offset ad-
dresses set to $0000. The volt-
age on pin 18 should now be be-
tween +25Vand +27 V. Switch
back to read, and the voltage on
pin 18 should drop to 0 V. Hit re-
set, restore location $0035 to
$8D and turn the power switch
off.

Now you will need some
known data patterns to write to
the EPROM socket for verifica-
tion. Starting at location $0178
store $FF, $00, $55 and $AA.
Set the first address to $0178
and the last address to $017B.
You are now set up to simulate

uz20
PIN NO. 2

® N oo h o

|

39
19

GND—ﬁ
12|22|23] 1| 2| 3| 4| 5] 6

SOCKET FOR
2708 EPROM

Vss A9 A8 A7 A6 A5 A4 A3 A2 Al AD

D@ DI D2 D3 D4 D5 D6 D7 VBB VCCVDDI
ST 10] 1] i3] 14] 15] 16] 17] 21| 24] 19] &

L
¢

READ

THREE 9V

22 BATTERIES
_ WRITE

R3 R2 R6

U2I PIN 19

R4f) &
R\

A
i

Fig. 2. Schematic of 2708 EPROM programmer for D2 kit.

programming these four bytes
to the first four locations of the
EPROM.

Set a breakpoint at $0030 and
start the PROGRAM mode. All
address lines of the EPROM
socket should now read a logi-
cal 0 level (less than 0.5 V). All
data lines should read a logical
1 level (more than 3.0 V). Contin-
ue program execution to the
breakpoint again by typing E
then G. Now address line AO
should read a 1 level; A1 through
A9 should read a 0 level; and
the data lines should all read a
0 level. Type E and G again and
you should read a 1 level on A1,
a 0 level on all other address
pins, and the data lines should
be alternate 1s and Os (D0 =1,
D1=0, etc.).

Continue once more to thé
breakpoint and the results

should be: A0 and A1 at a 1, all
other address lines'at 0, and the
data lines alternate Os and 1s
(D0O=0, D1=1, etc.). That’s it
for the data lines. Hit E, set the
EPROM address offset to $0155
and start the PROGRAM mode
again. The address lines at the
EPROM socket should now be
alternate 1s and Os (AO=1,
A1=0, etc.). Push E, set the
EPROM address offset to $02AA
and start the PROGRAM mode
again. The address lines should
now be alternate 0Os and 1s
(A0O=0, A1=1, etc.). Clear the
breakpoint and hit reset.

You can make a check of the
loop counter by setting a break-
point at $0068 and executing
the PROGRAM mode. Now push
the E key and the G key 100
times. This should cause the
0o appear on the display in-

Q,, Q,, Q; 2N4401 or equivalent

S, 3PST toggle switch

S, SPDT toggle switch

C:::C3, C; .1 uF, =20% ceramic capacitor

C, .005 mfd, +20% ceramic capacitor

R, B Rs 10k Ohm, =10% 1/4 Watt carbon resistor
BB 100 Ohm, =10% 1/4 Watt carbon resistor

Rs 10 Ohm, = 10% 1/4 Watt carbon resistor
MISC. 24-pin socket for EPROM, three 9 V batteries,

battery clips and battery holders.

Parts list.

Microcomputing February 1980 139

dicating that the program has
completed executing. Clear the
breakpoint and push reset.

Now that you know the loop
counter is operating correctly,
you can verify the delay loop
that sets the pulse width of the
+27 V programming pulse by
timing the execution of the
PROGRAM mode with your
watch. With the first, last and
EPROM offset addresses set at
$0000, execution of the PRO-
GRAM mode should take about
one minute and 25 seconds.
Change the last address to
$03FF (1024) and execution time
should be about two minutes.

The next text can be per-
formed using the DOWNLOAD
function and an EPROM with a
known program or an erased
one. First clear memory loca-
tions $0177 through $017F by
storing $00 to each location.
Set the first address to $0179
and the last address to $017C.
Plug the EPROM in, turn power
on and execute the DOWN-
LOAD function.

When the “-” returns to the
display, read locations $0177
through $017F. Locations
$0179-$017C should contain the
first four bytes of the program
in the EPROM ($FF if erased).
Locations $0177, $0178, $017D,
$017E and $017F should still
contain $00. Now run the VERI-
FY function without changing
anything, and the ““-”’ should re-
turn indicating that EPROM
and RAM contents for those
four locations match. If you

have a 2708 with a known pro-
gram, try a different EPROM ad-
dress offset and see that the
correct data appears in $0179-
$017C.

If everything works so far you
are on your way. It is left up to
you to try illegal addresses and
to check the ERASED function.

Operating Instructions

A. To program an EPROM:
1. The program to be put in E-
PROM must be in memory at a
location other than that where
the PG2708 program is.
2. Load PG2708 from cassette
(if not in EPROM).
3. Reset.
4. Load the first address of
your program at $A032-3.
5. Load the last address of
your program at $A034-5.
6. Load the EPROM address
offset $A036-7.
7. Make sure the EPROM power
switch is off and the Read/Write
switch is on read.
8. Plug the 2708 into the pro-
grammer socket.
9. Turn the EPROM power
switch on.
10. Turn the Read/Write switch
to write.
11. Type 0000G to execute the
PROGRAM function.
12. When the “-” returns to the
display, push Reset and then
turn the Read/Write switch to
read.
13. Type 0003G to VERIFY that
the EPROM was programmed
correctly.
14. Turn the EPROM power

switch off and remove the 2708.
B. To download an EPROM

to RAM:

1. Load PG2708 from cassette

(if not in EPROM).

2. Reset.

3. Load the first RAM address

at $A032-3.

4. Load the last RAM address

at $A034-5.

5. Load the EPROM address

offset at $A036-7.

6. Make sure the EPROM power

switch is off and the Read/Write

switch is on read.

7. Plug the 2708 into the pro-

grammer socket.

8. Turn the EPROM power

switch on.

9. Type 0006G to execute the

DOWNLOAD function.

10. Turn the EPROM power

switch off and remove the 2708.
C. To verify that EPROM and

memory agree:

1. Load PG2708 from cassette

(if not in EPROM).

2. Reset.

3. Load the first memory ad-

dress at $A032-3.

4. Load the last memory ad-

dress at $A034-5.

5. Load the EPROM address

offset at $A036-7.

6. Make sure the EPROM power

switch is off and the Read/Write

switch is on read.

7. Plug the 2708 into the pro-

grammer socket.

8. Turn the EPROM power

switch on.

9. Type 0003G to execute the

VERIFY function.

10. The “-” returns to the dis-

00001
00002A 0000
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
0001 4
00015
00016
00017
00018
00019
00020
0002 1
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032

Program listing.

‘EEL MCM2708 EPROM PROGRAMMER FiOr D-2 * REV. 2.2

ORG $00N0

ek e e e e e ke e e e s ok S e S ke ok e ok ek ke e ok e ke ok ke sk ok sk ok ok ok ek

*
*kkxk MCM2708 EPROM PROGRAMMER BY FRANK SUMMERS %%

*

ek e e ek ke e e ek ke oke e ok e e ok e ek e ok ke sk ek ek ok ek ek ke ok skok ek ek ek

*

* o

NO FUNCTIONAL CHANGES THIS REVISION.
CORRECTED LOCATION COUNTER INITIALIZATION.

9V BAITERIES.

%ok % b kO Ok Ok %k Ok %k k H F ok F *

140 Microcomputing February 1980

NOTE THAT THE 2708 REQUIRES +bV,

S ek ko kke

THIS ROUTINE WILL PROGRAM [HE MOTOROLA MCM2708,
MCM68708, OR MOST OIHER 2708 LYPE EPROMS ON A
MOTOROLA MEK68300D-2 SINGLE BOARD COMPUTER (D2 KIT)
375 BYTES OF MEMORY IS REQUIRED FOR THIS PROGRAM.
THE SIMPLE EPROM PROGRAMMER CIRCUIT (ATTACHED)
CAN BE ASSEMBLED ON IHE u-2 KIT PCB OR CAN BE
BUILT SEPARATELY AND CONNECTED WNITH A CABLE.
+12V, & =5V,

[HE +27V PROGRAMMING PULSE IS SUPPLIED BY THREE
100 27V PULSES OF ONE MSEC DURATION ARE APPLIED
FOR EACH EPROM ADDRESS TO BE PROGRAMMED.

THE KEYBOARD IS DISABLED TO PREVENT ACCIDENTALLY

HITTING "ESCAPE" & LEAVING THE +27V APPLIED.

play if the EPROM and memory

agree.

11. Turn the EPROM power

switch off and remove the 2708.
D. To check that a designat-

ed section of the EPROM is

erased:

1. Load PG2708 from cassette

(if not in EPROM).

2. Reset.

3. Load a first* memory ad-

dress at $A032-3.

4. Load a last* memory ad-

dress at $A034-5.

*(These can be any block of

memory—they are used only to

determine how many EPROM

locations to check.)

5. Load the EPROM address

offset at $A036-7.

6. Make sure the EPROM power

switch is off and the Read/Write

switch is on read.

7. Plug the 2708 into the pro-

grammer socket.

8. Turn the EPROM power

PROGRAM
20006

ADDRESS
RANGE

INITIALIZE
PIA & LOOP
COUNTER

POINT
STARTING
ADDRESSES

READ RAM
WRITE TO
EPROM

l

APPLY
PROGRAM
PULSE

INCREMENT
ADDRESS
POINTERS

DUMMY J

DELAY

DECREMENT

LOOP
COUNTER

RETURN
TO JBUG

Fig. 3. PROGRAM mode flow-
chart.

d

switch on.
9. Type 0009G to execute the
ERASED? function.
10. The “-” returns to the dis-
play if the designated EPROM
locations are erased and ready
for programming.
11. Turn the EPROM power
switch off and remove the 2708.
Two or more of these func-
tions are usually used together.
For example, to copy an exist-
ing 2708 you will first DOWN-
LOAD it into RAM, VERIFY that
it is stored correctly, check that
the new 2708 is ERASED, PRO-
GRAM the new 2708 and finally
VERIFY that the program is in
the new 2708. All of these oper-
ations can be performed after
the address information is
loaded only once. You should al-
ways use VERIFY immediately
after a DOWNLOAD or a PRO-
GRAM operation. Also, you
should always check that an
EPROM is ERASED before try-
ing to PROGRAM it. (Even new
EPROMs are not always
erased!)

Error Messages

If EO or E1 appears on the dis-
play (indicating out of range ad-
dresses), check the first, last
and offset addresses at $A032-
$A037. EO means the last ad-
dress minus the first address is

"VERIFY"
00036

ADDRESS
RANGE
OK 7

INITIALIZE
PIA

1

POINT TO
STARTING
ADDRESSES

READ RAM
READ EPROM

DO THEY
AGREE ?

INCREMENT
ADDRESS
POINTERS

LAST
ADDRESS
47

RETURN
TO JBUG

Fig. 4. VERIFY mode flowchart.

00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00049
00050
00051
00052
00053
00054
00055
00056
00057
0008
00059
00060
00061
00062
00063
00064
00065
00066
0noe6 1
00068
00069
00070
00071
000172
000/3
000 /4
00075
00076
000 17
000 /8
00079
00080
00081
000382
00083
00084
00085
00086
0008 1
000338
00089
00091
00092
00093
00094
00095
00096
0009 7
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111A
00112A
00113A
00114A
00115
00116
00117
00118
00119
001 20A
00121A
00122A
00123A
00124A
00125A
00126A
00127A
00128A
00129A
00130A
00131A
00132A
00133A
00134A
00135A
00136A
00137A
00138A
00139A
00140A
00141A
00142A
00143A
00144
00146
00147
00148
00149A
00150A
00151A
00152A
00153A
00154A
00155A

0000 1

0003
0006
0009

000C
000F
0011
0014
0017
001 A
ool1C
001 F
0022
0025
0028
0028
002D
0030
0032
0035
0037
0039
003C
003F
0041
0042
0044
0047

005A

BD
8D
8k
F6
E7
8D
B6

GE
FE
FE
B
86
8b

86

B7
BC
217
08
8D
BD
20

F
1k

* CE

FF
FF
86
B7

8004
8005
8006
3007
8023
EO8D
EOFE
ADOC
AD32
AO34
A036
AO38
AO3A
AO3B

>E>2>>>>>>>>>>>

000C
0104
oLy
0128

> > > >

6A O00AE
00B9 A
E2 0028

8005
8007
FF34
8004
8006

>>>P>>r>>

AO3A

IF LESS THAN 1024 LOCATIONS ARE BEING PROGRAMMED
ENOUGH DELAY IS ADDED IO KEEP [HE DUTY CYCLE

LOW TO EACH LOCATION PROGRAMMED.

[HE FOUR MODES OF OPERATION ARE:

PROGRAM ($0000) PROGRAMS THE EPROM FROM RAM.

2. VERIFY ($0003) VERIFIES THAT EPROM % RAM AGREE.
3. DOWNLOAD ($0006) READS EPROM INTO RAM.

4. ERASED ($0009) VERIFIES THAT EPROM [5 ERASED.

H %k % % Ok % 3k %k Ok 3k Ok Ok Ok F X X

ok kkdkdkkx OPERATING [NSTRUCTIONS sk dedk ek sk

CAUTION! THE READ/WRITE SWITCH SHOULD BE LEFT IN

THE READ POSITION EXCEPT WHEN ACIUALLY PROGRAMMING
AN EPROM. LEAVING IN WRITE WILL DISCHARGE BATIERIES.
1. LOAD STARTING RAM ADDRESS AT $A032-3.

2. LOAD LASI RAM ADDRESS AT $A034-5.

3. LOAD EPROM ADDRESS OFFSET AT $A036-1/.

4. INSERT EPROM & TURN POWER SWITCH ON.

5. SEI SWITCH TO WRITE FOR PROGRAMMING ONLY!

6. DOUBLE CHECK ADDRESSES BEFORE PROGRAMMING!

START DESIRED OPERATION.

~

8. THE JBUG PROMPT WILL RETURN WHEN FINISHED.
(PROGRAMMING TAKES 1.5 TO 2 MINUTES)

9. HIT RESET & SWITCH TO READ.

*kkhkhkhhkkkkikkk ERROR MESSAGES shkhkkkkkkkkkik

EO = RAM ADDRESS RANGE GREATER THAN 1024.
(SELECTED FUNCTION NOT ATTEMPTED)

El = RAM ADDRESS RANGE + EPROM ADDRESS
OFFSET GREATER THAN 102
(SELECIED FUNCTION NOT AlfFMPlED)

E2 = EPROM ADDRESS OVERRANGE WHILE PROGRAMMING.
(SELECTED FUNCTION ABORTED WHEN OVERRANGE OCCURRED)

E3 = EPROM AND RAM DID NOT AGREE DURING VERIFY.

E4 = DESIGNATED EPROM LOCATIONS NOT ERASED,

X ook k% R Ok R % %k b b ok % % o Ok b % % 3k b % b OF b Ok X b % % b X ok o b % ok F

dekdddkdkhkkkkhkhkikk EQUALES ok s sk ok ok ok dedeok hok
*

PIADRA EQU $3004 LSB OF EPROM ADDRESS

PIACRA EQU $8005 CA2 = EPROM ADDRESS LINE A8
PIADRB EQU $3006 DATA TO & FROM EPROM

PIACKB EQU $8007 CB2 = EPROM ADDRESS LINE A9
PROG EQU $3023 CB2 = +27V PROGRAM PULSE CONIROL
JBUG EQU SEO8D JBUG REENTRY POINT

OUTDS EQU SEOFE JBUG DISPLAY ROUIINE

DISBUF EQU $A00OC JBUG DISPLAY BUFFER

STADR EQU $A032 START ADDRESS

ENDADR EQU $A034 END ADDRESS

OFFSET EQU $A036 EPROM ADDRESS OFFSET

LOCCTR EQU $A038 LOCATION COUNTER

LPCTR QU $AO3A LOOP COUNTER

TEMPOS EQU $AO3B TEMPORY STORAGE FOR OFFSET

*
dkhkhkkkkhkhkkhkkkhkk JUMP [ABLE *%kkdkkhhkkhkhhkhik
*
JMP PROGM PROGRAM MODE
JMP. VERIFY VERIFY MODE
JMp DNLOAD DOWNLOAD MODE
JMP ERASED ERASED? MODE
*
*
Kkdkhkkkkkk PROGRAM ROUTINE deodedokdhododhok ok ko kok ok
*
*
PROGM JSh TEST CHECK ADDRESS RANGES
BSk INIT INITIALIZE PILA
START LDS #s$A078 RESTORE STACK POINTER
LDAB OFFSET MSB EPROM ADDRESS
STAB TEMPOS SAVE IT
BSk FORMAT FORMAT IT FOR PLA
LDAA OFFSET+1 LSB EPROM ADDRESS
SIAA PIADRA
LDX #5400
STX LOCCTR SEIS LOCATION COUNTER = 1024
LDX STADR POINT TO START ADDRESS
NEXT LDAA 0,X READ RAM BYTE
STAA PIADRB WRITE BYTE TO EPROM
LDAA #$34

STAA PROG APPLY 27V PULSE, NMI DISABLED
BSR DELAY ONE MSEC DELAY
LDAA #$3C
STAA PROG REMOVE 27V PULSE, NMI DISABLED
CPX ENDADR LAST ADDRESS?
BEQ ISTLOC CHECK LOCATION COUNTER
INX POINT [0 NEXI ADDRESS
BSR INCROM INC EPROM ADDRESS
JSk DECLOC DEC LOCATION COUNIER
BRA NEXT GO DO NEXT ADDRESS
*

*
dkkkkkkk PROGRAM MODE SUBROUTINES *kkidkki

*

INIT CLR PIACRA
CLR PIACRB
LDX #SFF34
STX PIADRA A SIDE OUTPUIS, CA2=0
STX PIADRB B SIDE OUTPUTS, CB2=0
LDAA #564
STAA LPCTR SEIS LOOP COUNITER = 100

Microcomputing February 1980

141

00156A
00157

00158

00159A
00160A
00161A
00162A
00163A
00164A
00165A
001 66

0ol67

00168A
00169A
00170A
00171A
001 72A
001 /3A
001 74A
00175A
001 76A
001 77A
00178A
00179A
00180A
00181A
00182A
00183A
00184A
00185A
00186A
00187A
001 88A
00189A
00190A
Q0191A
D0192A
00193A
00194A
00195

00196

00197A
00198A
00199A
00200A
00201

00203
00204A
00205A
00206A
00207A
00208A
00209
00210
00211A
00212A
0021 3A
00214A
00215A
00216A
0021 7A
00218
00219
00220A
00221A
00222A
00223
00224
00225A
00226A
00227
00228
00229A
00230A
00231A
00232
00233
00234A
00235A
00236A
00237
00238
00239A
00240A
00241A
00242
00243
00244A
00245A
00246A
00247A
00248A
00249A
00250A
00251A
00252A
00253A
00254A
00255
00256

00258
00259
00260
00261
00262
00263A
00264A
00265A
00266A
00267A
00268A
00269A
00270A
00271A
00272
00273
00274
002175
00276

005D

005E
0061
0063
0066
0068
0068
006D

0070
0073
0075
0076
0078
0079
0078
oo7C
007E
0080
0082
n085
0088
0089
008B
008E
0090
0093
0094
0096
0099
0098
009E
009F
O00AI
00A4
OOA/7

00A8
00AA
00AB
00AD

OOAE
00B1
00B3
00B4
00B7

00B9
00BC
00BE

0O0BF
00C2

00C4
ooc/

0ocs
00CA
0occ

00CE
00D

00D3
00D5
00Ds

O0DA
00bC
0O0DF

O0EI
0O0E3
00E6

00E9
OOEC
00EF
00F2
00F5
00F7
00F9
00FC
OOFF
o101

0103

0104
0106
0108
0108
010D
o110
o112
0113
olls

142 Microcomputing

7D
26

26
/A
26
1E

E
39

86
4A
26
39

7c
207,
39
G
20

TF
20

86
B7
20

86
B7
20

86
B7
7E

8D
A6

26
BC

08
8D
20

A038

A

65 00C8

A039

A

60 00C8

AO3A

A

A4 0011

E08D

AO3B

A

A

08 0080

11 0089

19 0094

21 009F
5A O0DA

34
8005
8007

3C
8005

34
8007

34
8005
3C
800/

3C

8005
8007

66

A
A
A

>>> >

>>> >>»>>

A

FD O0O0AA

8004

A

0l 00B4

AO3B

A

B7 0070

A039

A

0l 00BF

AO38

A

A4 0068

A038

A

EF 00B9
LC 00A8
90 005E

A0

A

OE O00El

01
A0

A
A

07 OOEI

02
AOL1

A
A

00 OOE!

OE
AOI0O
EOFE

A035
A034
A0 33

>>>

44 0l14A

00
8006

A
A

2F 013C

AO34

A

62 0174

99 O00AE
EF 0106

*
*
TSTLOC

DECLP

o *

ORMAT

SEIO

SETI

SET3

*

*
DELAY
DLY

*

*
INCROM

INCMSB
*

*
DECLOC

DECMSB

* ok ok

RIS

st
BNE
ISsT
BNE
DEC
BNE
JMp

LDAB
BEQ
DECB
BEQ
DECB
BEQ
DECB
BEQ
BRA
LDAB
STAB
STAB
RTS
LDAB
STAB
LDAB
STAB
RTS
LDAB
STAB
LDAB
STAB
RIS
LDAB
STAB
STAB
RIS

LDAA
DECA
BNE
RTS

INC
BEQ
RTS
INC
BRA

DEC

CLR
BRA

LDAA
STAA
BRA

LDAA
STAA
BRA

LDAA
STAA
JMp

LDAA
LDAB
SUBA
SBCB
CMPB
BCC

ADDA
ADCB
CMPB
BCC

RTS

LOCCIR
DEC
LOCCTR+1
DeC
LPCTR
START
JBUG

TEMPOS
SETO

SET
SEI2

SET3
E2
#$34
PIACRA
PIACRB

#33C
PIACRA
#$34
PIACRB

#3534
PIACRA
#5$3C
PIACRB

#$3C
PIACRA
PIACRB

#$66

DLY

PIADRA
INCMSB

TEMPOS
FORMAT

LOCCTR+1
DECMSB

LOCCTR
DECLP
LOCCTR

DECLOC
DELAY
ISTLOC

DISBUF+5
ERROR

#1
DISBUF+5
ERROR

#2
DISBUF+5
ERROR

#SE
DISBUF+4
OUTDS

ENDADR+1
ENDADR
STADR+I1
STADR
#4

EO
OFFSET+1
OFFSET
#4

El

TEST LOCATION COUWNIER (MSB)
TEST LOCATION COUNTER (LSB)
DEC LOOP COUNTER

IF NOI LAST LOOP - START OVER
DONE - BACK TO JBUG

GET EPROM ADDRESS (MSB)

IF EPROM MSB GREATER THAN 3
SEIS EPROM MSB = 2

n

SETS EPROM MSB

SETS EPROM MSB = 2

SEIS EPROM MSB = 3

SEIS ONE MSEC DELAY

INC EPROM LSB

INC EPROM MSB

DEC LOCATION COUNTER (LSB)

DEC LOCATION COUNTER (MSB)

DUMMY DELAY IF < 1024 BYIES
LAST LOCATION DONE YEI?

SEIS 6TH DIGIT OF DISBUF To "O"

SELS 6THEDIGLT [OE DISBUE RO

SE[S 6TH DIGIT 0OF DISBUE [0 w24

SEIS 5TH DIGIT OF DISBUE [“E®
EXIT & DISPLAY ERROR MESSAGE

QUL OF EPROM RANGE

OUT OF EPROM RANGE

dkkkhkhkhkhkkhkkikhkkrkx VERIFY ROUTINE ddd ko dhkdokkkkkk

*

*
VERIFY
VER

*
*

BSR
LDAA
CMPA
BNE
CPX
BEQ
INX
BSk
BRA

SETUP
0,X
PIADRB
E3
ENDADR
JBGJIMP

INCROM
VER

READ RAM BYTE

COMPARE WITH EPROM BYTE
MEMORY & EPROM DON“T AGREE
LAST ADDRESS?

RETURN To JBUG

POINT TO NEXT ADDRESS

INC EPROM ADDRESS

GO READ NEXT BYTE

dhkhkkkhkkkrkrrx DONNLOAD ROUTINE skkhdkkkhkkikkhk

*
*

February 1980

"ERASED?"
P0DIG

INITIALIZE
PIA

l

POINT TO
STARTING
ADDRESSES

READ
EPROM

INCREMENT
ADDRESS
POINTERS

RETURN
TO JBUG

Fig. 5. ERASED? mode flow-
chart.

greater than 1024, and E1 means
the last address minus the first
address plus the EPROM ad-
dress offset is greater than
1024.

If E2 appears on the display
the EPROM address tried to ex-
ceed 1024 while the program
was executing. You should hit
reset, switch to READ, switch
EPROM power off, reload the
program and start over. If you
were programming the EPROM
when the E2 occurred it would
probably have to be erased and
reprogrammed.

If E3 or E4 appears you can
find which EPROM location
caused the error by reading the
PlA registers. First push the ES-
CAPE (E) key, then 8004M. Re-
cord the contents of $8004 as
the LSB (least significant byte)
of the EPROM address. Now
push the GO (G) key to read
$8005. This register indicates
the first bit of the MSB (most
significant byte) of the EPROM
address ($X4 =0, $XC =1).

Push the GO key again to
read $8006. This is the data
read from this location of the
EPROM. Push the GO key again
to read $8007. This indicates|
the second bit of the MSB of the
EPROM address ($X4 =0, $XC = ¢
1). Use this bit with the one| ¢

i ,

DOWNLOAD
20066

INITIALIZE
PlA

l

POINT TO
STARTING
ADDRESSES

READ EPROM
WRITE TO
RAM

INCREMENT
ADDRESS
POINTERS

LAST
ADDRESS
7

RETURN
TO JBUG

Fig. 6. DOWNLOAD mode flow-
chart.

from $8005 to decode the MSB
of the EPROM address. If both
bits are 0 then the MSB = $00; if
the first bit is 1 and the second
is 0 then the MSB = 1; if the first
bit is 0 and the second is 1 then
the MSB = $02; and if both bits
are 1 then the MSB = $03.

If the error is E4 you now
know which location is not
erased and the contents of that
location (an erased location
reads $FF), but about all you
can do is to try erasing the
EPROM again. If the error is
E3 you can also read the cor-
responding RAM location to de-
termine the difference between
the EPROM and the RAM. If the
differenceis a bitin the EPROM
that is a 1 and should be a 0, try
programming it again. If it is a
bit that is a 0 and should be a 1,
the EPROM will have to be
erased before programming.

If E3 errors continue to occur
check your batteries for at least
8.5 volts each with a 20 mA
load. Because the program
stops execution when an error
occurs, only the first error can
be located in either case.

Don’t let all these error mes-
sages scare you. With careful
planning and keypunching you
may never see one.

Final Thoughts

A few notes about what types
of programs to put in EPROM
and how to modify them if nec-

00277A Q117 8D 31 0l4A DNLOAD BSR SETUP

00278A 0119 B6 8006 A DNLD LDAA PIADRB READ EPROM BYTE

00279A Ol11C A7 00 A STAA 0,X WRITE BYTE TO RAM

00280A OlIE BC A034 A cPX ENDADR LAST ADDRESS?

00281A 0121 27 51 0174 BEQ JBGIMP RETURN TO JBUG

00282A 0123 08 INX POINT TO NEXT ADDRESS

00283A 0124 8D 88 O0AE BSR INCROM INC EPROM ADDRESS

00284A 0126 20 FI 0119 BRA DNLD GO DOWNLOAD NEXT BYTE

00285 *

00286 *

00287 Sk hkdddkkkxhkkkkx ERASED? ROUT INE Hkdkdokkkkdkkkkkk
00288 *

00289 *

00290A 0128 8D 20 Ol4A ERASED BSR SETUP

00291A O12A B6 8006 A ERAS LDAA PIADRB READ EPROM BYTE

00292A 012D 81 FF A CMPA #SFF IS IT ERASED?

00293A 012F 26 12 0143 BNE E4 EPROM NOT ERASED

00294A 0131 BC A034 A CPX ENDADR LAST ADDRESS?

00295A 0134 27 3E 0174 BEQ JBGJMP RETURN TO JBUG

00296A 0136 08 INX POINT TO NEXT ADDRESS

00297A 0137 BD OOAE A JSR INCROM INC EPROM ADDRESS

00298A 013A 20 EE 012A BRA ERAS GO DO NEXT BYTE

00299 *

00300 *

00302 *

00303 *kkkkkkhkikkk READ MODE SUBROUTINES #kdkkkikkkk ki

00304 *

00305A 013C 86 03 A E3 LDAA #3

00306A OI13E B7 AOIl A STAA DISBUF+5 SETS 6TH DIGIT OF DISBUF TO "3"
00307A 0141 20 9E O0OEI BRA ERROR

00308 *

00309 *

00310A 0143 86 04 A E4 LDAA #4

00311A 0145 B7 AOIl A STAA DISBUF+5 SETS 6TH DIGIT OF DISBUF TO "4t
00312A 0148 20 97 QOEI BRA ERROR

00313 *

00314 *

00315A 014A 8D 9D OOE9 SETUP BSR TEST CHECK ADDRESS RANGES

00316A 014C 8D 13 0161 BSR INITI INITIALIZE PIA

00317A O14E F6 A036 A LDAB OFFSET MSB EPROM ADDRESS

00318A 0151 F7 AO3B A STAB TEMPOS SAVE IT

00319A 0154 BD 0070 A JSR FORMAT FORMAT IT FOR PIA

00320A 0157 B6 A037 A LDAA OFFSET+1 LSB EPROM ADDRESS

00321A 015A B7 8004 A STAA PIADRA

00322A 015D FE A032 A LDX STADR POINT TO START ADDRESS

00323A 0160 39 RTS

00324 *

00325 *

00326A 0161 7F 8005 A INITI CLR PIACRA

00327A 0164 7F 8007 A CLR PIACRB

00328A 0167 CE FF34 A LDX #S$FF34

00329A O16A FF 8004 A STX PIADRA A SIDE OUTPUTS, CA2=0

00330A 016D CE 0034 A LDX #$0034

00331A 0170 FF 8006 A STX PIADRB B SIDE INPUTS, CB2=0

00332A 0173 39 RTS

00333 *

00334 *

00335A 0174 7E EO8D A JBGJMP JMP JBUG OPERATION DONE, RETURN TO JBUG
00336 *

00337 *

00338 END

TOTAL EKRRORS 00000

DEC 00C8 DECLOC 00B9 DECLP 0068 DECMSB OOBF DELAY 00A8 DISBUF A0OC
DLY O0OAA DNLD 0119 DNLOAD 0117 EO 00CE EI 00D3 E2 00DA
ES. 013C E4 0143 ENDADR A0O34 ERAS 012A ERASED 0128 ERROR 0OEIl
FORMAT 0070 INCMSB 00B4 INCROM OOAE INIT 0049 INITI 0161 JBGJMP 0174
JBUG E08D LOCCTR A038 LPCTR A03A NEXI 002B OFFSET A036 OUTDS EOFE
PIACRA 8005 PIACRB 8007 PIADRA 8004 PIADRB 8006 PROG 8023 PROGM 000C
SETO 0080 SETI 0089 SET2 0094 SET3 009F SETUP 014A STADR A032
START 0011 TEMPOS A03B TEST 00E9 TSTLOC O0SE VER 0106 VERIFY 0104

essary to get you started: First,
this program itself is an ideal
candidate if you have limited
RAM available because it will
leave your entire RAM area free
for the program that you are
putting in EPROM. Other likely
candidates to consider are:
memory tests (so you can test
all of your RAM), subroutines
that you use frequently (saves
RAM every time they are called),
added functions that your mon-
itor ROM doesn’t perform and
any other programs that you
want ready to run immediately
when your system is powered
up.

Before putting a program in
EPROM, you must first make
sure it has no self-modifying
code and that all jumps to ab-

solute -addresses within the
program are changed to match
what the addresses will be when
the EPROM is plugged into its
normal socket. No self-modify-
ing code means all variables
must be located in RAM some-
where else. In the D2 kit you can
use the scratchpad RAM ($A000-
$A07F) used by the monitor if
you don’t interfere with the
monitor’s variables. Generally
$A032-$A05F can be used safe-
ly as is the case with this pro-
gram, which uses $A032-$A03B.

There are eight jumps to ab-
solute addresses within the
program used with the 2708
EPROM programmer. Four of
these are in the jump table at the
beginning of the program. The
others are located at lines 120,

142, 297 and 319. All of these
must be changed to put this
program in EPROM or to relo-
cate anywhere else in RAM.

The 2708 EPROM programmer
circuit was held to the mini-
mum to keep the cost down. If
you didn’t mind spending a little
more, it could be built into a
separate box and connected to
the D2 kit through connector
J1. The +27 V could be sup-
plied from a separate power
supply if available. LEDs could
be added to indicate when pow-
er was on and when the read/
write switch was in the write
position (see Fig. 1). If you an-
ticipate heavy use, a more ex-
pensive zero-insertion-force
type socket should be used for
the EPROM. B

Microcomputing February 1980 143

	402
	403
	404
	405
	406
	407

